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Swarm: to be launched tomorrow!

◮ ESA’s satellite trio aims to perform the best ever survey of Earth’s magnetic field.

Credit: ESA
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The Earth’s magnetic field

◮ Core-generated field mediates between Earth and the wider solar system.

Credit: ESA
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Applications: providing directional information

◮ Use of electronic compasses now very widespead in mobile phones & compact
cameras. Also for drill orientation in hydrocarbon industry.

◮ ∼ 2 million queries per year of online calculators.

◮ Applications requires very accurate models of the current geomagnetic field.
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Evolution of Earth’s magnetic field in Denmark
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◮ Slow change in the Earth’s magnetic field known as ”secular variation” (SV).
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Global change in declination over the past 400 years

◮ Declination at Earth’s surface (Jackson et al., 2000) Units: degrees.
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Edmund Halley: Observer, Astronomer & Geophysicist

Edmund Halley aged 31. Halley’s 1701 map of declination.
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Edmund Halley: Observer, Astronomer & Geophysicist

Halley’s rotating, magnetized, hollow spheres theory

of secular variation, 1692.

Edmund Halley in 1736, aged 81.
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What is the origin of the westward drift?
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What is the origin of the westward drift?

◮ The Modern Approach:
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What is the origin of the westward drift?

◮ The Modern Approach:

◮ 1. Detailed characterization with global, high quality, magnetic observations.
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What is the origin of the westward drift?

◮ The Modern Approach:

◮ 1. Detailed characterization with global, high quality, magnetic observations.

◮ 2. Physically consistent models of deep Earth processes generating field change.
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Global network of ground observatories

◮ DTU Space operates stations in Denmark, Greenland and Tristan Da Cunha.

◮ Also provide fluxgate (FGE and DI) instruments to many observatories.
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Example DTU magnetic observatory: Tristan da Cunha
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I den Sydatlantiske Anomali bliver magnetfeltet svagere og svagere: målinger fra DTUs magnetiske observatorium
på øen Tristan da Cunha (TDC) viser dette fænomen meget tydeligt.
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Ørsted and CHAMP satellite magnetometry missions

◮ Dedicated satellite missions: Ørsted 1999 - present and CHAMP 2000 - 2010.
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Instruments from DTU Space

◮ Vector Field Magnetometers and star trackers from MI division were used on Ørsted
and CHAMP, and will also be key in the Swarm mission.
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Radial field at core surface in 1999.5

◮ Radial field in 1999.5,from the CHAOS-4 field model (Olsen et al., 2013).
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Radial field at core surface in 2013.5

◮ Radial field in 2013.5, from the CHAOS-4 field model (Olsen et al., 2013).
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Rate of change of radial field in 2006.5

◮ Rate of change of the radial field in 2006.5, from CHAOS-4 (Olsen et al., 2013).
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Summary of observational constraints
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Summary of observational constraints

◮ Westward drifting field features at surface.
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Summary of observational constraints
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Summary of observational constraints

◮ Westward drifting field features at surface.

◮ Due to westward motion (approx 15 km/yr) of field at core surface.

◮ Field change is localized at longitudes under the Atlantic hemisphere.

◮ And it occurs predominantly at latitudes < 30 degrees.

◮ What mechanism could produced such geographically localized westward drift?
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Earth’s deep interior: the seat of the geodynamo
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Simulating the geodynamo

◮ Solid mantle and inner core.

◮ Simulate outer core MHD in a thick spherical shell.

◮ Fluid motions: Navier-Stokes eqns: Inertia, Coriolis, Viscous, Bouyancy, Lorentz.

◮ Electrodynamics: Maxwell’s eqns simplify to Induction eqn (MHD approx).

◮ Heat Transport: Boussinesq approx.

◮ Highly nonlinear system: disparities in spatial & time scales are challenging.
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Comparison of core surface field and rate of change
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Historical field evolution

◮ Radial field at core surface from 1590.0-1990.0, (Jackson et al., 2000): units µT.
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Geographical localisation of field change
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Field evolution in a conventional geodynamo model

◮ Radial field at core surface from a standard geodynamo model, units µT.
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Comparison of localisation of field change
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Problems with standard geodynamo models:
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Problems with standard geodynamo models:

◮ No systematic westward drift.
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Problems with standard geodynamo models:

◮ No systematic westward drift.

◮ No localization to the Atlantic hemisphere.
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Problems with standard geodynamo models:

◮ No systematic westward drift.

◮ No localization to the Atlantic hemisphere.

◮ No intense field concentrations at low latitudes.
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Inner core bouyancy flux: hemispheric differences

+-

◮ Inner core may be solidifying faster beneath Indonesia, releasing plumes enriched in
lighter elements and preferentially driving convection in one hemisphere.
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Coupling of the inner core, outer core, and mantle
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Comparison of core surface field and rate of change
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Field evolution in new coupled Earth dynamo model

◮ Radial field at outer boundary of coupled Earth dynamo model
From Aubert, Finlay and Fournier (2013).
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Geographical localization
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A planetary scale gyre in the outer core

b c
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Summary

◮ First self-consistent dynamo model that explains the observed pattern of SV.
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Summary

◮ First self-consistent dynamo model that explains the observed pattern of SV.

◮ A new proposal for the origin of geomagnetic westward drift.

◮ Due to a planetary scale gyre in the liquid metal outer core.

◮ Coupling between the inner core, outer core and mantle localizes gyre and field
changes at low latitudes.
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Summary

◮ First self-consistent dynamo model that explains the observed pattern of SV.

◮ A new proposal for the origin of geomagnetic westward drift.

◮ Due to a planetary scale gyre in the liquid metal outer core.

◮ Coupling between the inner core, outer core and mantle localizes gyre and field
changes at low latitudes.

◮ Heterogeneous growth of inner core localizes field change to Atlantic.
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A first attempt at predicting future field evolution

◮ Radial field at core surface, starting from 2006 field projected into the core, and
using the coupled-Earth dynamo to run forward.
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Looking ahead: Making the most of Swarm

Credit: ESA

◮ Outlook: Physics-based, short term, predictions of SV now in sight by combining
dynamo models and observations via data assimilation.

◮ New theory makes testible predictions for detailed pattern of field change.

◮ Swarm’s improved local time coverage (3 satellites)
-> better ablility to isolate core field changes & test ideas.
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Geodynamo modelling: Governing Equations
◮ Conservation of momentum:

Ro

(

∂u

∂t
+ u.∇u

)

+Ω× u = −∇p− qRaC g+ (∇×B)×B+ E∇
2u

◮ Magnetic induction under MHD approx:

∂B

∂t
= ∇× (u×B) +∇

2B

◮ Transport of buoyant material (Boussinesq Approx):

∂C

∂t
+ u · ∇C = q∇2C

◮ Non-dimensional control parameters:

Ro =
η

2Ωr2
o

Ra =
g0αβr

2
o

2Ωκ
E =

ν

2Ωr2
o

q =
κ

η

◮ Solve numerically in spherical shell geometry: SH and FD.

◮ Boundary conditions:

◮ (i) No slip at ICB and CMB.
◮ (ii) Electrically conducting IC and insulating Mantle.
◮ (iii) Homogeneous buoyancy flux at ICB and CMB.
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Gravitational coupling of inner core and mantle

Fig : Mass distribution in mantle is not spherically symmetric, neither is gravitational field

experienced by inner core. If inner core is torqued out of alignment with mantle it experiences a

restoring force i.e. inner core is effectively pinned to the mantle.
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Time-longitude plots of field evolution
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Fig : Time-longitude plot of field evolution at equator.
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Westward drift at low latitudes

gufm1 coupled Earth dynamo
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Fig : Power distribution for Latitude vs Azimuthal speed.
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Core surface flow: An eccentric gyre
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Fig : Flow close to the outer boundary of dynamo at same instant as snapshots shown earlier.
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What lies beneath: flow deep within the core

 

−16 −8 0 8 16

+- +-

0
o

0
o

−40

−20

0

20

40

km/yr

b c

d

Fig : Radial flow (top left) and azimuthal flow (top right) in the equatorial plane and azimuthal flow

in the meridional plane (bottom).
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Inge Lehmann: Discoverer of Earth’s inner core

Fig : Inge Lehmann (1888-1993), Danish Seismologist, Discoverer of Earth’s inner core in 1936

(left) and her interpretation of a seismic reflection from the inner core (right).
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