Bottom-up control of geomagnetic field evolution

Chris Finlay

DTU Space

Julien Aubert, Alexandre Fournier IPG, Paris

DTU Space National Space Institute

Swarm: to be launched tomorrow!

ESA's satellite trio aims to perform the best ever survey of Earth's magnetic field.

Credit: ESA

The Earth's magnetic field

▶ Core-generated field mediates between Earth and the wider solar system.

Credit: ESA Div of Geomagnetism 20.11.2013

Applications: providing directional information

- Use of electronic compasses now very widespead in mobile phones & compact cameras. Also for drill orientation in hydrocarbon industry.
- $\blacktriangleright \sim 2$ million queries per year of online calculators.
- ► Applications requires very accurate models of the current geomagnetic field.

Magnetic compass direction

Evolution of Earth's magnetic field in Denmark

Slow change in the Earth's magnetic field known as "secular variation" (SV).

Global change in declination over the past 400 years

▶ Declination at Earth's surface (Jackson et al., 2000) Units: degrees.

Edmund Halley: Observer, Astronomer & Geophysicist

Edmund Halley aged 31.

Halley's 1701 map of declination.

Edmund Halley: Observer, Astronomer & Geophysicist

Halley's rotating, magnetized, hollow spheres theory of secular variation, 1692.

Edmund Halley in 1736, aged 81.

► The Modern Approach:

► The Modern Approach:

▶ 1. Detailed characterization with global, high quality, magnetic observations.

► The Modern Approach:

- ▶ 1. Detailed characterization with global, high quality, magnetic observations.
- ▶ 2. Physically consistent models of deep Earth processes generating field change.

Global network of ground observatories

DTU Space operates stations in Denmark, Greenland and Tristan Da Cunha.
 Also provide fluxgate (FGE and DI) instruments to many observatories.

Example DTU magnetic observatory: Tristan da Cunha

I den Sydatlantiske Anomali bliver magnetfeltet svagere og svagere: målinger fra DTUs magnetiske observatorium på øen Tristan da Cunha (TDC) viser dette fænomen meget tydeligt.

Ørsted and CHAMP satellite magnetometry missions

▶ Dedicated satellite missions: Ørsted 1999 - present and CHAMP 2000 - 2010.

Instruments from DTU Space

Vector Field Magnetometers and star trackers from MI division were used on Ørsted and CHAMP, and will also be key in the Swarm mission.

▶ Radial field in 1999.5, from the CHAOS-4 field model (Olsen et al., 2013).

▶ Radial field in 2013.5, from the CHAOS-4 field model (Olsen et al., 2013).

▶ Rate of change of the radial field in 2006.5, from CHAOS-4 (Olsen et al., 2013).

Westward drifting field features at surface.

- Westward drifting field features at surface.
- ▶ Due to westward motion (approx 15 km/yr) of field at core surface.

- Westward drifting field features at surface.
- ▶ Due to westward motion (approx 15 km/yr) of field at core surface.
- ▶ Field change is localized at longitudes under the Atlantic hemisphere.

- Westward drifting field features at surface.
- ▶ Due to westward motion (approx 15 km/yr) of field at core surface.
- Field change is localized at longitudes under the Atlantic hemisphere.
- ▶ And it occurs predominantly at latitudes < 30 degrees.

- Westward drifting field features at surface.
- ▶ Due to westward motion (approx 15 km/yr) of field at core surface.
- Field change is localized at longitudes under the Atlantic hemisphere.
- ▶ And it occurs predominantly at latitudes < 30 degrees.
- ▶ What mechanism could produced such geographically localized westward drift?

Earth's deep interior: the seat of the geodynamo

Simulating the geodynamo

- Solid mantle and inner core.
- Simulate outer core MHD in a thick spherical shell.
- Fluid motions: Navier-Stokes eqns: Inertia, Coriolis, Viscous, Bouyancy, Lorentz.
- Electrodynamics: Maxwell's eqns simplify to Induction eqn (MHD approx).
- Heat Transport: Boussinesq approx.
- ▶ Highly nonlinear system: disparities in spatial & time scales are challenging.

Comparison of core surface field and rate of change

Historical field evolution

▶ Radial field at core surface from 1590.0-1990.0, (Jackson et al., 2000): units μ T.

Geographical localisation of field change

DTU

₩

Field evolution in a conventional geodynamo model

> Radial field at core surface from a standard geodynamo model, units μ T.

Comparison of localisation of field change

No systematic westward drift.

► No systematic westward drift.

No localization to the Atlantic hemisphere.

- ► No systematic westward drift.
- No localization to the Atlantic hemisphere.
- No intense field concentrations at low latitudes.

Inner core bouyancy flux: hemispheric differences

Inner core may be solidifying faster beneath Indonesia, releasing plumes enriched in lighter elements and preferentially driving convection in one hemisphere.

Coupling of the inner core, outer core, and mantle

IC = Inner core, OC = Outer core, CMB = Core-mantle boundary.

Comparison of core surface field and rate of change

Field evolution in new coupled Earth dynamo model

 Radial field at outer boundary of coupled Earth dynamo model From Aubert, Finlay and Fournier (2013).

Geographical localization

A planetary scale gyre in the outer core

First self-consistent dynamo model that explains the observed pattern of SV.

- First self-consistent dynamo model that explains the observed pattern of SV.
- A new proposal for the origin of geomagnetic westward drift.

Summary

- First self-consistent dynamo model that explains the observed pattern of SV.
- A new proposal for the origin of geomagnetic westward drift.
- Due to a planetary scale gyre in the liquid metal outer core.

Summary

- First self-consistent dynamo model that explains the observed pattern of SV.
- A new proposal for the origin of geomagnetic westward drift.
- ▶ Due to a planetary scale gyre in the liquid metal outer core.
- Coupling between the inner core, outer core and mantle localizes gyre and field changes at low latitudes.

Summary

- First self-consistent dynamo model that explains the observed pattern of SV.
- A new proposal for the origin of geomagnetic westward drift.
- ▶ Due to a planetary scale gyre in the liquid metal outer core.
- Coupling between the inner core, outer core and mantle localizes gyre and field changes at low latitudes.
- ▶ Heterogeneous growth of inner core localizes field change to Atlantic.

A first attempt at predicting future field evolution

Radial field at core surface, starting from 2006 field projected into the core, and using the coupled-Earth dynamo to run forward.

Looking ahead: Making the most of Swarm

Credit: ESA

- Outlook: Physics-based, short term, predictions of SV now in sight by combining dynamo models and observations via data assimilation.
- New theory makes testible predictions for detailed pattern of field change.
- Swarm's improved local time coverage (3 satellites)

-> better ablility to isolate core field changes & test ideas.

Geodynamo modelling: Governing Equations

Conservation of momentum:

$$Ro\left(\frac{\partial \mathbf{u}}{\partial t} + \mathbf{u}.\nabla \mathbf{u}\right) + \mathbf{\Omega} \times \mathbf{u} = -\nabla p - qRaC\,\mathbf{g} + (\nabla \times \mathbf{B}) \times \mathbf{B} + E\nabla^2\mathbf{u}$$

Magnetic induction under MHD approx:

$$\frac{\partial \mathbf{B}}{\partial t} = \nabla \times (\mathbf{u} \times \mathbf{B}) + \nabla^2 \mathbf{B}$$

Transport of buoyant material (Boussinesq Approx):

$$\frac{\partial C}{\partial t} + \mathbf{u} \cdot \nabla C = q \nabla^2 C$$

Non-dimensional control parameters:

$$Ro = \frac{\eta}{2\Omega r_o^2}$$
 $Ra = \frac{g_0 \alpha \beta r_o^2}{2\Omega \kappa}$ $E = \frac{\nu}{2\Omega r_o^2}$ $q = \frac{\kappa}{\eta}$

Solve numerically in spherical shell geometry: SH and FD.

- Boundary conditions:
 - ▶ (i) No slip at ICB and CMB.
 - (ii) Electrically conducting IC and insulating Mantle.
 - ► (iii) Homogeneous buoyancy flux at ICB and CMB.

Gravitational coupling of inner core and mantle

Fig: Mass distribution in mantle is not spherically symmetric, neither is gravitational field experienced by inner core. If inner core is torqued out of alignment with mantle it experiences a restoring force i.e. inner core is effectively pinned to the mantle. NTII

Time-longitude plots of field evolution

Fig : Time-longitude plot of field evolution at equator.

DTU

⊟

Westward drift at low latitudes

Fig: Power distribution for Latitude vs Azimuthal speed.

Core surface flow: An eccentric gyre

Fig : Flow close to the outer boundary of dynamo at same instant as snapshots shown earlier.

What lies beneath: flow deep within the core

Fig: Radial flow (top left) and azimuthal flow (top right) in the equatorial plane and azimuthal flow in the meridional plane (bottom).

Inge Lehmann: Discoverer of Earth's inner core

DTU

 Fig: Inge Lehmann (1888-1993), Danish Seismologist, Discoverer of Earth's inner core in 1936

 (left) and her interpretation of a seismic reflection from the inner core (right).

 43
 DTU Space, Technical University of Denmark

 Div of Geomagnetism
 20.11.2013