# An accelerating high latitude jet in the Earth's core

#### Phil Livermore and Rainer Hollerbach

University of Leeds, U.K.

**Chris Finlay** 

DTU Space, Technical University of Denmark



**DTU Space** National Space Institute

# Earth's magnetic field

- $\bullet > 98\%$  Earth's  ${\bf B}$  field originates in the core
- Provides protection from the solar wind
- Generated by dynamo action in the core
- Not steady; continuously changing -> Secular Variation (SV)



[Image credit: ESA]

#### **Outstanding scientific questions**

- Structure of flows responsible for generating, and driving the evolution, of the field?
- Origin of core field changes on timescales of decades and less?

#### The core





- The most inaccessible and least understood part of the Earth
- Extremely high temperatures (4000-6000K) and pressures (130-360 GPa)
- $\bullet$  Iron alloy (mostly Fe plus Ni, and a little Si, O), density  $10^4~{\rm kg\,m^{-3}}$
- A turbulent place vigorous motions are driven by cooling of the planet
- All obscured from view by 3000km of rocky mantle !

3 DTU Space

# **Geomagnetic field observations**



• Ground observatories:





• Low Earth Orbit Satellites: Ørsted, SAC-C, CHAMP and now Swarm





4

# The Swarm satellite constellation

- A pair of satellites (Alpha, Charlie), flying close together at lower altitude
- A third satellite (Bravo) slightly higher up



## Instruments from DTU Space





• Vector Field Magnetometers and star trackers from MI division are crucial to *Swarm*, as they were used on Ørsted and CHAMP.

## **Current status of constellation**





#### **Global geomagnetic field models**

- CHAOS series of geomagnetic field models aims to describe the near-Earth magnetic field to high spatial and temporal resolution (Olsen et al., 2006, 2009, 2010, 2014)
- Potential field approach:  $\mathbf{B} = -\nabla V$  where  $V = V^{\text{int}} + V^{\text{ext}}$ .
- The internal part of the potential takes the form

$$V^{\text{int}} = a \sum_{n=1}^{N_{\text{int}}} \sum_{m=0}^{n} \left( g_n^m \cos m\phi + h_n^m \sin m\phi \right) \left(\frac{a}{r}\right)^{n+1} P_n^m \left(\cos \theta\right)$$

• For  $n \leq 20$ , expand in 6th order B-splines

$$g_n^m(t) = \sum_{k=1}^K {}^k g_n^m B_k(t).$$

- Also co-estimate the large-scale magnetospheric field
- And work with satellite vector data in magnetometer frame, co-estimating Euler angles

8 DTU Space



## **Model Estimation**

- DTU's latest geomagnetic model, CHAOS-6 (*Finlay et al., 2016*) http://www.spacecenter.dk/files/magnetic-models/CHAOS-6/
- Derived from 7,873,156 data
- Robust non-linear least squares including regularization, iteratively minimizing

$$[\mathbf{d} - F(\mathbf{m})]^T \underline{\underline{\mathbf{W}}}^{-1} [\mathbf{d} - F(\mathbf{m})] + \lambda_2 \mathbf{m}^T \underline{\underline{\mathbf{\Lambda}}}_2 \mathbf{m} + \lambda_3 \mathbf{m}^T \underline{\underline{\mathbf{\Lambda}}}_3 \mathbf{m}$$

 $\underline{\underline{W}}$  is a Huber weighting matrix,  $\underline{\underline{\Lambda}}_2$  and  $\underline{\underline{\Lambda}}_3$  are regularization matrices

• Weighted rms misfit to non-polar, dark *Swarm* scalar data is **2.14 nT**, For scalar field differences, **0.26 nT** along-track and **0.45 nT** across-track.

# Fit to Swarm field difference data: histograms of residuals



# Fit to ground observatory data, Eastward component dY/dt





### Downward continuation to the core-mantle boundary

- Wish to understand origin of changes -> need to descend to core
- Possible to downward continue through mantle (Neglecting currents there on timescales > 1 yr)
- Small scales amplified as approach source
- Field at core surface stable to degree 13 (above this crust dominate)
- Field change (SV) stable to degree 18

$$B_{r} = \sum_{n=1}^{N} \sum_{m=0}^{n} (n+1) \left( g_{n}^{m} \cos m\phi + h_{n}^{m} \sin m\phi \right) \left( \frac{a}{r} \right)^{n+2} P_{n}^{m} \left( \cos \theta \right)$$







# Radial field SV $dB_r/dt$ at core surface in 2015





# Core surface $B_r$ and $dB_r/dt$ in Northern Polar Region, 2015



# The inner core tangent cylinder







• For field changes on year to decade timescales, Maxwell's equations reduce to

$$\frac{\partial \mathbf{B}}{\partial t} = \nabla \times (\mathbf{u} \times \mathbf{B}) + \eta \nabla^2 \mathbf{B}$$



• For field changes on year to decade timescales, Maxwell's equations reduce to

$$\frac{\partial \mathbf{B}}{\partial t} = \nabla \times (\mathbf{u} \times \mathbf{B}) + \eta \nabla^2 \mathbf{B}$$

• At the surface of the core, where  $u_r = 0$ , and if we can neglect magnetic diffusion then

$$\frac{\partial B_r}{\partial t} = -\nabla_H \cdot (\mathbf{u} B_r)$$



• For field changes on year to decade timescales, Maxwell's equations reduce to

$$\frac{\partial \mathbf{B}}{\partial t} = \nabla \times (\mathbf{u} \times \mathbf{B}) + \eta \nabla^2 \mathbf{B}$$

• At the surface of the core, where  $u_r = 0$ , and if we can neglect magnetic diffusion then

$$\frac{\partial B_r}{\partial t} = -\nabla_H \cdot (\mathbf{u} B_r)$$

- We parameterize  ${\bf u}$  in terms of a simple flow close to the tangent cylinder, defined by the stream-function  $\Psi(s,\phi,z)$ 

$$u_s = \frac{1}{Hs} \frac{\partial \Psi}{\partial \phi}, \qquad u_\phi = -\frac{1}{H} \frac{\partial \Psi}{\partial s}, \qquad u_z = \frac{dH}{ds} \frac{z}{H^2 s} \frac{\partial \Psi}{\partial \phi} \quad H = \sqrt{1 - s^2}$$

where

$$\Psi = \sum_{m=0}^{M} a_m \, e^{im\phi} \int_0^s \Phi_m(s') \, \sqrt{1 - s'^2} \, ds', \qquad \Phi_m(s) = \left[\sqrt{1 - s^2} \, e^{-\beta^2} - c_m\right] s^{m+1}$$



• For field changes on year to decade timescales, Maxwell's equations reduce to

$$\frac{\partial \mathbf{B}}{\partial t} = \nabla \times (\mathbf{u} \times \mathbf{B}) + \eta \nabla^2 \mathbf{B}$$

• At the surface of the core, where  $u_r = 0$ , and if we can neglect magnetic diffusion then

$$\frac{\partial B_r}{\partial t} = -\nabla_H \cdot (\mathbf{u} B_r)$$

- We parameterize  ${\bf u}$  in terms of a simple flow close to the tangent cylinder, defined by the stream-function  $\Psi(s,\phi,z)$ 

$$u_s = \frac{1}{Hs} \frac{\partial \Psi}{\partial \phi}, \qquad u_\phi = -\frac{1}{H} \frac{\partial \Psi}{\partial s}, \qquad u_z = \frac{dH}{ds} \frac{z}{H^2 s} \frac{\partial \Psi}{\partial \phi} \quad H = \sqrt{1 - s^2}$$

where

$$\Psi = \sum_{m=0}^{M} a_m e^{im\phi} \int_0^s \Phi_m(s') \sqrt{1-s'^2} \, ds', \qquad \Phi_m(s) = \left[\sqrt{1-s^2} \, e^{-\beta^2} - c_m\right] s^{m+1}$$

 $\bullet$  And seek the flow parameters  $a_m\text{, }c_m\text{, }\beta$  that minimize the residual measure

$$\mathcal{R}_{\mathcal{N}+\mathcal{S}} = \int_{0}^{360} \int_{10^{\circ}}^{30^{\circ}} \left( SV_{obs} - SV_{syn} \right)^{2} \sin\theta d\theta d\phi + \int_{0}^{360} \int_{150^{\circ}}^{170^{\circ}} \left( SV_{obs} - SV_{syn} \right)^{2} \sin\theta d\theta d\phi$$

17 DTU Space

## Fit to observed field change





[Livermore et al. (2017)]

# A localized jet at the tangent cylinder





# Physical origin of the tangent cylinder jet



# Time-dependence of core surface field





# Time-dependence of core surface SV





# Acceleration of the tangent cylinder jet





[Livermore et al. (2017)]

# Possible implications for the dynamo process





- Shear at tangent cylinder is important for dynamos in rapidly-rotating regime
- Fundamental for building toroidal field within core
- May play a role in dynamo oscillations and reversals

# Some open questions

- How deep does this jet extend into core?
- Why has it recently been accelerating?
- How will it develop in the upcoming years?

# A look to the future



- Dream: Accurate forecasting of geomagnetic field changes decades ahead
- Will require sufficient understanding of core dynamics and dynamo process
- And long-term monitoring from space at multiple local times (for assimilation)
- Perhaps with many small, mini/nanosatellites, simultaneously measuring field?



#### (1) Swarm data show intense field change is occuring under Canada and Siberia





- (1) Swarm data show intense field change is occuring under Canada and Siberia
- (2) Can be explained by a westward jet, localised within 450km of the tangent cylinder





- (1) Swarm data show intense field change is occuring under Canada and Siberia
- (2) Can be explained by a westward jet, localised within 450km of the tangent cylinder
- (3) Jet velocity is  ${\sim}40$  km/yr, three times higher than average flow in the core



- (1) Swarm data show intense field change is occuring under Canada and Siberia
- (2) Can be explained by a westward jet, localised within 450km of the tangent cylinder
- (3) Jet velocity is  ${\sim}40$  km/yr, three times higher than average flow in the core
- (4) May be an important ingredient in the geodynamo and its fluctuations





#### Jet acceleration as seen by other field models



# SV Spectra from CHAOS-6, GRIMM, CM5/CI



#### Swarm Alpha, ASM - VFM Residuals 24 Δ 3 Local Time of ascending node [hour] $\Delta F = |B_{VFM}| - F_{ASM} [nT]$ -2 -3 -4 uncorrected, $\sigma = 963 \text{ pT}$ corrected, $\sigma = 168 \text{ pT}$ -5 Apr14 Jul14 Oct14 Jan14 Jan15 Apr15

# In-flight calibration and characterization

[Tøffner-Clausen et al., (2016)]

- Small, but unexpected, differences between ASM and VFM scalar intensities
- Due to a sun-driven disturbance, that varies with the solar incident angles
- Can be modelled and RMS residuals reduced e.g. to 0.168 nT for Swarm Alpha
- Important to find the root cause, investigations into this are ongoing
- 31 DTU Space

# In-flight calibration and characterization



#### [Tøffner-Clausen et al., (2016)]

- Are now able to model the Sun-driven disturbance
- For example, RMS residuals reduced from 0.96nT to 0.168 nT for Swarm Alpha
- Important to find the root cause, investigations are ongoing
- 32 DTU Space

# CHAOS-6 model: Parameterization of the external Field

• For the external potential, expand in SM and GSM co-ordinate systems, with  $\theta_d$  and  $T_d$  being dipole co-lat. and dipole local time

$$V^{\text{ext}} = a \sum_{n=1}^{2} \sum_{m=0}^{n} (q_{n}^{m} \cos mT_{d} + s_{n}^{m} \sin mT_{d}) \left(\frac{r}{a}\right)^{n} P_{n}^{m} (\cos \theta_{d}) + a \sum_{n=1}^{2} q_{n}^{0,\text{GSM}} R_{n}^{0}(r,\theta,\phi).$$

• Degree-1 coefficients in SM coords dependent on the RC disturbance index

# Vector difference residuals, Swarm vs CHAMP



### Power spectrum of SV at core surface



# Time-dependence of core surface SA





# Field strength and magnetic pole position in 2016.5





DTU Space, 2017 19.1.2017

# Field strength and magnetic pole position in 1999



