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Secular acceleration pulses
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• Core field change is not linear

• Observe ’pulses’ of enhanced secular acceleration

• Duration of pulses are short, typically 1-2 years

• Recurrence times and amplitudes are unpredictable

• Geomagnetic Jerks occur between consecutive
acceleration pulses of opposite sign
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Secular acceleration pulses at the core surface

• Acceleration pulses localized in space
[Lesur et al., 2008, Olsen and Mandea, 2008]

• Prominent signature at low latitudes

• Series of pulses over the past two decades
[Chulliat et al. 2010; Chulliat and Maus, 2014]

• Wish to better characterise pulses at the core surface

• And to understand the physical process responsible

• Longer time series are essential
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Tool 1: CHAOS-6-x7 global geomagnetic field model

• Latest update of CHAOS field model [Olsen et al., 2014; Finlay et al., 2016] is CHAOS-6-x7, see

http://www.spacecenter.dk/files/magnetic-models/CHAOS-6/

• Uses MAG L1B LR 0505 Swarm data (scalar field, vector field, field differences) until end of Aug 2018

• Model spans 1999 - 2018, also using CHAMP, Østed and SAC-C satellite data, from ’quiet’ times

• Plus revised monthly means from AUX OBS ground obs. hourly means as available in August 2018

• 10,777,772 data in all

• Weighted rms misfit to Swarm non-polar, dark scalar data is 2.39 nT,
For scalar field differences, 0.25 nT along-track and 0.41 nT cross-track.

• CHAOS forward code has been translated to Python: the chaomagpy package (see CHAOS-6 webpage)
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CHAOS-6-x7: Residuals to 0505 Swarm data
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CHAOS-6-x7: Residuals to 0505 Swarm data
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CHAOS-6-x7: example comparisons with updated ground observatory data
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Core surface secular acceleration pulses in CHAOS-6-x7

[Finlay et al., 2018, CHAOS-6-x6, to degree 9]
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Tool 2: Optimized Local Analysis of Core Field (SOLA)

• Forward scheme:

dn(rn) =

∫
S

Gn(rn, s)Br(s)dS

where Gn is the Green’s function for the Neumann boundary value problem relating Br(s) on S to data dn.

• Estimate the field at a location of interest s0 on S using

B̂r(s0) =
∑
n

qn(s0)dn =
∑
n

qn(s0)

∫
S

Gn(rn, s)Br(s)dS =

∫
S

K(s0, s|rn)Br(s)dS

where K is a ’Resolution Kernel’, describing how the estimate is a averaged version of the true Br(s0)

K(s0, s) =
∑
n

qn(s0)Gn(rn, s)

• SOLA: Subtractive Optimized Local Average: find qn such that K is as close as possible to a target Kernel T

min

∮
S

[K(s0, s)− T (s0, s)]2dS + λE subject to

∫
K(s0, s) dS = 1

• Variance on the estimate is obtained as
σ2(s0) = qTEq
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Core field SV in 2016.5, collections of SOLA local estimates

λ=5e-3, σ = 0.25µT/yr, Kernel width 42 deg λ=2.5e-4, σ = 5µT/yr, Kernel width 30 deg

[Hammer and Finlay, 2018, under review]
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Time-longitude plot of equatorial SA, from SOLA estimates
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Time-longitude plot of equatorial SA, from SOLA estimates

SOLA CHAOS-6 to deg 9
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Tool 3: Virtual Observatories: Localised point estimates at satellite altitude

• Time series of monthly point estimates at satellite altitude
[Mandea and Olsen, 2006; Olsen and Mandea, 2007; Whaler and Beggan, 2015; Barrois et al., 2018]

• Take data within 700km of cylinder center, every 4 months

• Selection criteria: dark, quiet time data
(Kp < 3, |dRC/dt| < 3nT/hr, IMF Bz > 0, Em < 0.8 mV/m )

• Remove estimates of core, crustal, magnetospheric and Sq fields

• Work with sums and differences of data, along and across track

• Robust (Huber weighted) fit of local cubic potential

V (x, y, z) = vxx + vyy + vzz + vxxx
2
+ vyyy

2 − (vxx + vyy)z
2

+2vxyxy + 2vxzxz + 2vyzyz − (vxyy + vxzz)x
3

+3vxxyx
2
y + 3vxxzx

2
z + 3vxyyxy

2
+ 3vxzzxz

2
+ 6vxyzxyz

−(vxxy − vyzz)y
3
+ 3vyzzy

2
z + 3vyzzyz

2 − (vxxz + vyyz)z
3

• Calculate prediction at chosen reference point using B = −∇V
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dBr/dt during the Swarm era, as seen by VO’s
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Inversion for time-dependent core flow

Under the frozen-flux approximation, at the surface of the outer core we have

∂Br

∂t
= −∇H · (uBr),

• Use Ground Observatories at Earth’s surface and Virtual Observatories at satellite altitude, 4 month steps

• Separate responsible flow into steady and time-dependent parts

• Expand flow using basis of inertial modes plus geostrophic flow [e.g. Zhang and Liao, 2017]

• Assume time-dependent part is equatorially-symmetric, consisting of geostrophic and quasi-geostrophic parts

• Minimize L1 norm of mode enstrophy, flow acceleration and account for error due to unresolved scales

• Solve iteratively using the scheme

mk+1 =
(
GTWdG+R(mk)

)−1
GTWdd

obs
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Flow accelerations responsible for SA pulses

[Kloss and Finlay, 2018, under review]
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Azimuthal flow accelerations at low latitudes

[Kloss and Finlay, 2018, under review]
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Azimuthal flow accelerations at low latitudes

[Kloss and Finlay, 2018, under review]
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Tool 4: Numerical geodynamo simulations

• Solve simultaneously eqn for:
- Conservation of momentum in a rotating, electrically conducting, Boussinesq fluid
- Magnetic induction under the MHD approx
- Heat/buoyancy transport

• V. challenging to reach rapidly-rotating regime due to disparities of time and length scales

• Aubert et al., (2017) propose to follow a path through parameter space maintaining Rm

• Enhance viscosity at small length scales

• But achieve an Earth-like ratio of time scales:

Convective timescale >> Alfvén wave timescale >> Rotation timescale

• Allows interaction btw slow convective processes and faster hydromagnetic wave dynamics to be studied
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Bursts of buoyancy occur deep within the core

[Aubert and Finlay, under review]
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Due to magnetic tension, these trigger (QG) Alfvén waves

[Aubert and Finlay, under review]
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Produce SA pulses and jerks as they arrive at the core surface

2000
2002
2004
2006
2008

2010
2012
2014
2016

2009

2006 -3 yr

+3 yr

ep
oc

h

0 1,000 2,000-1,000-2,000

nT.yr-2

−20

−15

−10

−5

0

5

10

15

tim
e 

(y
r)

longitude (oE)

Simulated magnetic acceleration at core surfaceGeomagnetic secular acceleration at core surface
b d

Figure 2

a c

−180 0 180
 

 

−90 90

0 1,900 3,800-1,900-3,800

nT.yr-2longitude (oE)
−180 0 180−90 90

jerk

-1 yr-4 yr fe

0 16 32-16-32
km.yr-2 −30 −20 −10 0 10 20

time (yr)

az
im

ut
ha

l f
lo

w
 

ac
ce

le
ra

tio
n 

(k
m

.y
r-2

)

−60

-20

20

Simulated core surface flow acceleration
2 yr

−40

0

40

jerk
jerk

jerk

2018

jerk

2000
2002
2004
2006
2008

2010
2012
2014
2016

2009

2006 -3 yr

+3 yr

ep
oc

h

0 1,000 2,000-1,000-2,000

nT.yr-2

−20

−15

−10

−5

0

5

10

15
tim

e 
(y

r)

longitude (oE)

Simulated magnetic acceleration at core surfaceGeomagnetic secular acceleration at core surface
b d

Figure 2

a c

−180 0 180
 

 

−90 90

0 1,900 3,800-1,900-3,800

nT.yr-2longitude (oE)
−180 0 180−90 90

jerk

-1 yr-4 yr fe

0 16 32-16-32
km.yr-2 −30 −20 −10 0 10 20

time (yr)

az
im

ut
ha

l f
lo

w
 

ac
ce

le
ra

tio
n 

(k
m

.y
r-2

)

−60

-20

20

Simulated core surface flow acceleration
2 yr

−40

0

40

jerk
jerk

jerk

2018

jerk

[Aubert and Finlay, under review]
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Conclusions

• Latest Mag L1B 0505 and AUX OBS data are included in the CHAOS-6-x7 model

- Mag L1B 0505 data performs well for high quality field modelling
- Shows a field acceleration pulse in 2016

• Can now invert data directly for local estimates of core surface field and derivatives (SOLA)

- Choose location of interest, time window, spatial averaging target function
- Can produce regular estimates of the field (e.g. monthly) and SV/SA (e.g. annual)
- Can avoid problems with disturbed polar data if focus on low latitude, and can account for error correlation

• ’Virtual observatory’ dataset has been updated using the 0505 dataset

- Seems was Jerk-like event in the Pacific during the Swarm-era around 2016
- Field acceleration pulses involve by enhanced acceleration of non-axisymmetric azimuthal flow

• Numerical dynamo simulations beginning to show events relevant to pulse origin [Aubert, 2018]

- Arrival of QG Alfvén waves at core surface (much faster than convective processes)
- Many features not yet fully understood, but v. intriguing dynamically consistent mechanism for pulses/jerks
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