Inversion for quasi-geostrophic modes of core flow

Clemens Kloss and Chris Finlay

DTU Space, Technical University of Denmark

With thanks to Nicolas Gillet and Olivier Barrois

DTU Space National Space Institute

L'équipe Géodynamo Grenoble: 20 ans!

N. Gillet, circa 2006;

L'équipe Géodynamo ski excursion, 2010.

Motivation: Secular variation at low latitudes

• Modern geomagnetic data: ground observatories & satellite data (CHAMP, now Swarm)

- Strong secular variation at latitudes below 30 degrees, esp. under Atlantic hemisphere
- 3 DTU Space

Motivation: Secular variation at low latitudes

- Localised secular acceleration pulses [Lesur et al., 2008, Olsen and Mandea, 2008]
- Compatible with non-axisymmetric azimuthal flow fluctuations [Gillet et al., 2015]
- 4 DTU Space

20yrs Grenoble Geodynamo Team, Autrans 2017 18.5.2017

Motions in a rapidly-rotating sphere

DTU

• Consider an inviscid, incompressible, fluid in rapid rotation and subject to an impenetrable spherical boundary condition [Greenspan (1969)]

$$\frac{\partial \mathbf{u}}{\partial t} + 2\mathbf{e}_z \times \mathbf{u} = -\nabla p, \qquad \nabla \cdot \mathbf{u} = 0, \qquad \mathbf{e}_r \cdot \mathbf{u} = 0 \text{ at } \mathbf{r} = 1.$$
(1)

• 'Inertial' mode solutions to this problem take the form [Zhang et al., (2001)]

$$\mathbf{u}_I = \hat{\mathbf{u}}_I^{M,N,n}(s,z) \,\mathrm{e}^{i(M\phi+2\mathrm{i}\sigma t)},\tag{2}$$

for both E^S and E^A symmetries, characterised by 3 integers M, N and n.

- The slowest E^S inertial modes, for given M, N are known as 'quasi-geostrophic' modes.
- To form a complete basis, the inertial modes should be supplemented by geostrophic modes, for example of the form [Liao and Zhang (2010); Ivers et al., (2015)]

$$\mathbf{u}_{\mathbf{G}} = G_{2K-1}(s) \, \mathbf{e}_{\phi} \quad \text{where} \quad G_{2K-1} = \sum_{j=1}^{K} \frac{(-1)^{K-j} [2(K+j)-1]!!}{2^{K-1} (K-j)! (j-1)! (2j)!!} s^{2j-1} \tag{3}$$

Example modes in a rapidly-rotating sphere

- Modes are in general 3D (although slowest E^S modes are quasi-2D)
- Fully compatible with spherical geometry
- Well suited for study of equatorial dynamics

Quasi-Geostrophic (QG) modes may dominate?

 In rapidly-rotating homogenous fluids, response to slow perturbations is often columnar [Hide (1966); Busse & Carrigan (1976); Zhang and Liao (2004); Jault (2008); Bardsley & Davidson, (2016)]

• Projection onto QG modes is a promising way towards reduced model of core dynamics [Labbé et al., 2015]

Idea here: Try to invert SV for a flow consisting of QG modes

Forward problem

• Writing $B_r = \overline{B}_r + \widetilde{B}_r$, sum of known large-scale and the unknown small-scale field, the diffusionless induction equation for the large-scale SV at the core surface is

$$\frac{\partial \overline{B}_{r}}{\partial t} = -\overline{\nabla_{\mathrm{H}} \cdot \left(\mathbf{u}\overline{B}_{r}\right)} + e, \qquad \text{where} \qquad e = -\overline{\nabla_{\mathrm{H}} \cdot \left(\mathbf{u}\widetilde{B}_{r}\right)} \tag{4}$$

 \bullet Expand the instantaneous flow $\mathbf u$ as a sum of geostophic and QG inertial modes

$$\mathbf{u}(s,z,\phi) = \sum_{K=1}^{K_{max}} a_G^K G_{2K-1}(s) \,\mathbf{e}_{\phi} + \sum_{M=1}^{M_{max}} \sum_{N=1}^{N_{max}} a_I^{M,N} \hat{\mathbf{u}}_I^{M,N}(s,z) \mathrm{e}^{iM\phi}$$
(5)

- Here, we consider only E^S modes with lowest frequency (i.e. the QG modes)
- Chose truncation levels $K_{max} = 20$, $M_{max} = 16$, $N_{max} = 10$
- Large-scale field \overline{B}_r is up to SH deg. 14, e also parameterized in SH up to deg. 14
- When evaluating (4) only need the core surface part of the flow
- Solve (4) via vector spherical transform using u in poloidal-toriodal form, up to deg. 39

Inverse problem

- Assume \overline{B}_r at CMB is known 1999-2016 (taken from CHAOS-6 field model)
- Data d: $\frac{\partial \overline{B}_r}{\partial t}$ on grid outside tangent cylinder at CMB; assumed error $2\mu T/yr$.
- Solve for mode amplitudes $\mathbf{a} = \left\{a_G^K; a_I^{M,N}\right\}$ defining large-scale flow
- And simultaneously for SH coefficients of SV due to unresolved scales $\mathbf{e} = \{e_t^s\}$

Inverse problem

- Assume \overline{B}_r at CMB is known 1999-2016 (taken from CHAOS-6 field model)
- Data d: $\frac{\partial \overline{B}_r}{\partial t}$ on grid outside tangent cylinder at CMB; assumed error $2\mu T/yr$.
- Solve for mode amplitudes $\mathbf{a} = \left\{a_G^K; a_I^{M,N}\right\}$ defining large-scale flow
- \bullet And simultaneously for SH coefficients of SV due to unresolved scales $\mathbf{e}=\{e_t^s\}$
- \bullet Regularized least-square inversion for $\mathbf{m}=\{\mathbf{a};\mathbf{e}\}.$ Seek to minimize

$$\Phi = (\mathbf{d} - \mathbf{H}\mathbf{m})^T \mathbf{C}_{\mathbf{d}}^{-1} (\mathbf{d} - \mathbf{H}\mathbf{m}) + \lambda \mathbf{R}(\mathbf{a}) + \mathbf{e}^T \mathbf{P}_{e,e}^{-1} \mathbf{e}$$
(6)

 ${\bf H}$ is the matrix connecting ${\bf d}$ to ${\bf m}$

 $\mathbf{R}(\mathbf{a})$ is a norm measuring some property of the large-scale flow

 $\mathbf{P}_{e,e}$ is prior covariance matrix of e from a geodynamo simulation [Barrois et al., 2016]

Inverse problem

- Assume \overline{B}_r at CMB is known 1999-2016 (taken from CHAOS-6 field model)
- Data d: $\frac{\partial \overline{B}_r}{\partial t}$ on grid outside tangent cylinder at CMB; assumed error $2\mu T/yr$.
- Solve for mode amplitudes $\mathbf{a} = \left\{a_G^K; a_I^{M,N}\right\}$ defining large-scale flow
- \bullet And simultaneously for SH coefficients of SV due to unresolved scales $\mathbf{e}=\{e_t^s\}$
- \bullet Regularized least-square inversion for $\mathbf{m}=\{\mathbf{a};\mathbf{e}\}.$ Seek to minimize

$$\Phi = (\mathbf{d} - \mathbf{H}\mathbf{m})^T \mathbf{C}_{\mathbf{d}}^{-1} (\mathbf{d} - \mathbf{H}\mathbf{m}) + \lambda \mathbf{R}(\mathbf{a}) + \mathbf{e}^T \mathbf{P}_{e,e}^{-1} \mathbf{e}$$
(6)

 ${\bf H}$ is the matrix connecting ${\bf d}$ to ${\bf m}$

 $\mathbf{R}(\mathbf{a})$ is a norm measuring some property of the large-scale flow

 $\mathbf{P}_{e,e}$ is prior covariance matrix of e from a geodynamo simulation [Barrois et al., 2016]

- \bullet Compare solutions with different flow regularization norms $\mathbf{R}(\mathbf{a})$:
 - ▶ L2 norm of flow horizontal divergence and radial vorticity [e.g. Gillet et al., 2009]

$$\int_{\text{CMB}} (\nabla_{\text{H}} \cdot \mathbf{u})^2 + (\mathbf{e}_r \cdot \nabla \times \mathbf{u})^2 dS$$

▶ L1 norm of mode amplitudes, implemented iteratively [Farquharson and Oldenburg, 1998]

$$|\mathbf{a}|_1 = \sum_K |a_G^K| + \sum_M \sum_N |a_I^{M,N}|$$

Results I: L2 norm inversion

flow in 2015

Results I: L2 norm inversion

Results I: L2 norm inversion

DTU

flow and pred. SV of large-scale field in 2015

Results II: L1 norm inversion

flow in 2015

Results II: L1 norm inversion

Results II: L1 norm inversion

DTU

flow and pred. SV of large-scale field in 2015

DTU

Flow in 1999.0

25 km/yr

Flow in 2000.0

25 km/yr

Flow in 2001.0

25 km/yr

Flow in 2002.0

25 km/yr

DTU

Flow in 2003.0

25 km/yr

Flow in 2004.0

Flow in 2005.0

25 km/yr

Flow in 2006.0

25 km/yr

Flow in 2007.0

25 km/yr

Flow in 2008.0

25 km/yr

Flow in 2009.0

25 km/yr

Flow in 2010.0

25 km/yr

Flow in 2011.0

25 km/yr

Flow in 2012.0

25 km/yr

Flow in 2013.0

25 km/yr

Flow in 2014.0

25 km/yr

DTU

Ξ

Flow in 2015.0

25 km/yr

DTU

Ξ

Flow in 2016.0

25 km/yr

DTU

Ξ

Discussion

- Basis of geostrophic and quasi-geostrophic modes is an alternative means of parameterizing core motions responsible for SV, suitable for studying equatorial region
- Allowing for impact of unresolved scales, can adequately fit observed CMB SV
- Penalizing L1 norm of mode amplitudes, find certain modes dominate (esp. M = 1) and some exhibit rapid time variations
- Approach can be extended to study more general flows using basis of $E^{\cal S}$ and $E^{\cal A}$ inertial modes
- Extensions
 - ► Solve for background flow ($E^S \& E^A$) plus time-dependent QG/Geost. modes [see also poster by N. Gillet]
 - ▶ Directly fit satellite and ground data rather than field model
 - ► Solve for time-dependent mode amplitudes, link to dynamics [Labbé et al., 2015]
- Comparisons with more complete forward studies of low latitude core dynamics needed

Geostrophic & E^S modes, L1 norm

flow and pred. SV of large-scale field in 2015

Geostrophic, E^S modes and E^A modes, L1 norm

flow and pred. SV of large-scale field in 2015

Geostrophic, E^S modes and E^A modes, L1 norm

Restricted Geostrophic & QG basis

Restricted Geostophic & QG basis

${\cal E}^{\cal S}$ inertial mode solutions

$$u_{r} = -i \sum_{i=0}^{N} \sum_{j=0}^{N-i} C_{ij;NM} r^{M+2(i+j)-1} \sin^{M+2j} \theta \cos^{2i} \theta e^{iM\phi}$$
(7a)

$$\cdot \sigma^{2i-1} (1-\sigma^{2})^{j-1} [\sigma(M+M\sigma+2j\sigma) - 2i(1-\sigma^{2})]$$
(7b)

$$u_{\theta} = -i \sum_{i=0}^{N} \sum_{j=0}^{N-i} C_{ij;NM} r^{M+2(i+j)-1} \sin^{M+2j-1} \theta \cos^{2i-1} \theta e^{iM\phi}$$
(7b)

$$\cdot \sigma^{2i-1} (1-\sigma^{2})^{j-1} [\sigma(M+M\sigma+2j\sigma) \cos^{2} \theta + 2i(1-\sigma^{2}) \sin^{2} \theta]$$
(7c)

$$u_{\phi} = \sum_{i=0}^{N} \sum_{j=0}^{N-i} C_{ij;NM} r^{M+2(i+j)-1} \sin^{M+2j-1} \theta \cos^{2i} \theta e^{iM\phi}$$
(7c)

$$\cdot \sigma^{2i} (1-\sigma^{2})^{j-1} (M+M\sigma+2j),$$
(7c)

where the coefficients $C_{ij;NM}$ are defined as

$$C_{ij;NM} = \frac{(-1)^{i+j} [2(N+M+i+j)-1]!!}{2^{j+1} (2i-1)!! (N-i-j)!! j! (M+j)!}.$$
(8)

and the half-frequencies, σ are the roots of the polynomial

$$0 = \sum_{j=0}^{N} (-1)^{j} \frac{[2(2N+M-j)]!}{j!(2N+M-j)![2(N-j)]!} \left[(M+2N-2j) - \frac{2(N-j)}{\sigma} \right] \sigma^{2(N-j)}$$
(9)

31 DTU Space

The CHAOS-6 geomagnetic field model

- CHAOS series of geomagnetic field models aims to describe the near-Earth magnetic field to high spatial and temporal resolution (Olsen et al., 2006, 2009, 2010, 2014)
- Potential field approach: $\mathbf{B} = -\nabla V$ where $V = V^{\text{int}} + V^{\text{ext}}$.
- The internal part of the potential takes the form

$$V^{\text{int}} = a \sum_{n=1}^{N_{\text{int}}} \sum_{m=0}^{n} \left(g_n^m \cos m\phi + h_n^m \sin m\phi \right) \left(\frac{a}{r}\right)^{n+1} P_n^m \left(\cos \theta\right)$$

• For $n \leq 20$, expand in 6th order B-splines

$$g_n^m(t) = \sum_{k=1}^K {}^k g_n^m B_k(t).$$

- Also co-estimate the large-scale magnetospheric field
- And work with satellite vector data in magnetometer frame, co-estimating Euler angles

CHAOS-6 model: Parameterization of the external Field

• For the external potential, expand in SM and GSM co-ordinate systems, with θ_d and T_d being dipole co-lat. and dipole local time

$$V^{\text{ext}} = a \sum_{n=1}^{2} \sum_{m=0}^{n} \left(q_n^m \cos mT_d + s_n^m \sin mT_d \right) \left(\frac{r}{a} \right)^n P_n^m (\cos \theta_d)$$

+
$$a \sum_{n=1}^{2} q_n^{0,\text{GSM}} R_n^0(r,\theta,\phi).$$

• Degree-1 coefficients in SM coords dependent on the RC disturbance index

- Use DTU's latest geomagnetic model, CHAOS-6 (*Finlay et al., 2016*) http://www.spacecenter.dk/files/magnetic-models/CHAOS-6/
- Derived from 7,873,156 data
- Weighted rms misfit to non-polar, dark *Swarm* scalar data is **2.14 nT**, For scalar field differences, **0.26 nT** along-track and **0.45 nT** across-track.

Fit to Swarm field difference data: histograms of residuals

Vector difference residuals, Swarm vs CHAMP

Fit to ground observatory data, Eastward component dY/dt

Power spectrum of SV at core surface

Time-dependence of core surface SV

Time-dependence of core surface SA

