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Talk Outline

1. Observations: CHAMP, @Orsted & ground observatories
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Monitoring the present geomagnetic field

> @rsted satellite launched in 1999.

» Since then, continuous monitoring from ground and space.

» The CHAMP satellite provided low altitude vector data 2000 - 2010.

» Ground network has evolved, now with new stations in remote locations.

» Overall, a wealth of data: CHAOS model aims to capture this in terms of high
resolution spherical harmonic field models.

Fig: Examples of modern geomagnetic observation platforms: the CHAMP satellite 2000-2010 and
Tristan da Cunha ground observatory, South Atlantic, since 2009.
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The final days of CHAMP
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Fig: CHAMP altitude decrease post 2009.0.
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Post-CHAMP era

» CHAMP data only available until September 2010, Swarm not yet launched.
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Post-CHAMP era

» CHAMP data only available until September 2010, Swarm not yet launched.

» No vector satellite observations available for about 3 years.
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Post-CHAMP era

» CHAMP data only available until September 2010, Swarm not yet launched.
» No vector satellite observations available for about 3 years.

» What else do we have available?
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Post-CHAMP era

» CHAMP data only available until September 2010, Swarm not yet launched.

» No vector satellite observations available for about 3 years.
» What else do we have available?
» Thankfully @rsted is still providing some scalar data!
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Post-CHAMP era

» CHAMP data only available until September 2010, Swarm not yet launched.

» No vector satellite observations available for about 3 years.

» What else do we have available?

» Thankfully @rsted is still providing some scalar data!

> And we have the ground observatories (some now reporting quasi-definitive data)
CHAOS-4 Update 25.8.2013
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The @rsted satellite
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Fig: The Drsted satellite.
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@rsted scalar data availability since 2010.0
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Fig: Orsted scalar data per month: As a percentage of the total possible (red dots), and the
number of data suitable for CHAOS-type field modelling (blue bars).

» Data available from:
ftp://ftp.space.dtu.dk/data/magnetic-satellites/Oersted /mag-f/
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DTU
Example: 1 month of selected @rsted F data from 2013

Fig: Selected @Drsted scalar field measurements, 15th March to 15th April 2013. Colour scale runs
from 15,000nT to 45,000nT. The altitude varied from 630 to 850 km.
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Location of ground observatories

9

Fig: Observatories where annual differences of monthly means are available. Those reporting

quasi-definitive (QD) data in 2013 shown in red.
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Talk Outline

2. Modelling approach

10 DTU Space, Technical University of Denmark

CHAOS-4 Update

25.8.2013

=
—
=

M



Forward modelling scheme: CHAOS

» Following Olsen et al. (2006) satellite vector data is used in the instrument frame.
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Forward modelling scheme: CHAOS

» Following Olsen et al. (2006) satellite vector data is used in the instrument frame.
» Euler angles co-estimated, in 10 day bins for CHAMP data.
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Forward modelling scheme: CHAOS

» Following Olsen et al. (2006) satellite vector data is used in the instrument frame.
» Euler angles co-estimated, in 10 day bins for CHAMP data.
» The internal field is parameterized as

Nint n

. n+1
VIR = 0 S5 S (7 (1) cos me + A (1) sin me) (3) P™ (cos )
r

n=1m=0

» For n < 20, g™ (t) and h™(t) expanded in order 6 splines with knot spacing 0.5 yrs.
» For n > 20, gJ* and h]* are static. N;p+=100.
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Forward modelling scheme: CHAOS

» Following Olsen et al. (2006) satellite vector data is used in the instrument frame.
» Euler angles co-estimated, in 10 day bins for CHAMP data.
» The internal field is parameterized as

M

Nint n

n+1
vint — g Z Z (gn'(t) cosme + h,,' (t) sinmg) (a) P (cos )

n=1m=0

» For n < 20, g™ (t) and h™(t) expanded in order 6 splines with knot spacing 0.5 yrs.
» For n > 20, gJ* and h]* are static. N;p+=100.

» The external field parameterization consists of:

> In SM co-ords, co-estimate degree 1 (0.5 day bins) and degree 2 (5 day bins).
> Rapid changes in SM degree 1 parameterized by new (hourly) RC index.
» Also solve for static degree 1 and 2 in GSM co-ords.

vext = 4 Z Z (q;'1 cosmTy + s;n sin de) P:L(cos 04)
n=1m=0
1 , a2
L. Z (47" cos Ty + 87" sinTy) - {RCe(t) (—) + RC;i(t) (—) }Pi'"(cosed)
a r

2
+  ad ay MR (r,0,9).

11 DTU Space, Technical University of Denmark CHAOS-4 Update 25.8.2013



Inversion: data selection & model estimation

> Data selection
> Quiet times: (Kp < 20, |[dDs¢/dt| < 2nT.)
> Night side: data from dark regions (sun 10 deg below horizon).
> Vector CHAMP and @rsted data below 55 deg geomag lat if available.
» Otherwise scalar data from CHAMP, @rsted and SAC-C.
> Also annual differences of revised monthly means from ground stations.
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Inversion: data selection & model estimation

> Data selection
> Quiet times: (Kp < 20, |[dDs¢/dt| < 2nT.)
> Night side: data from dark regions (sun 10 deg below horizon).
» Vector CHAMP and Qrsted data below 55 deg geomag lat if available.
» Otherwise scalar data from CHAMP, @rsted and SAC-C.
» Also annual differences of revised monthly means from ground stations.

» Model Estimation

> Nonlinear problem: solve with iterative descent (quasi-Newton) algorithm.
> Iteratively re-weighted least squares (Huber weights) for robust data misfit.
» Regularize n < 20 by miniminzing (d®B,/dt3)? at CMB.
> Regularize n > 85 by miniminzing B2 at Earth’s surface.
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Inversion: data selection & model estimation

> Data selection
> Quiet times: (Kp < 20, |[dDs¢/dt| < 2nT.)
> Night side: data from dark regions (sun 10 deg below horizon).
» Vector CHAMP and Qrsted data below 55 deg geomag lat if available.
» Otherwise scalar data from CHAMP, @rsted and SAC-C.
» Also annual differences of revised monthly means from ground stations.

» Model Estimation

> Nonlinear problem: solve with iterative descent (quasi-Newton) algorithm.
> Iteratively re-weighted least squares (Huber weights) for robust data misfit.
» Regularize n < 20 by miniminzing (d®B,/dt3)? at CMB.
> Regularize n > 85 by miniminzing B2 at Earth’s surface.

» CHAQOS-4 strategy: 2 independent models

» Model 1: Full span 1997-2013.5, to degree 80. Focus on SV.

» Model 2: Only low altitude/solar min CHAMP data post 2009.0. Focus on
crustal field up to n = 85.

» Final model by merging at degree 25 where high correlation btw models 1, 2.
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Talk Outline

3. Lithospheric field from low altitude, solar min, CHAMP data
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CHAOS-4h Lithospheric field at Earth’s surface
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Fig: Radial field at Earth’s spherical reference radius to n = 85. Units: nT.
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CHAOS-4h - MF7
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Fig: CHAOS-4h - MF7 (Maus et al., 2010), radial field to n = 85. Units: nT.
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CHAOS-4h - GRIMML_L120
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Fig: CHAOS-4h - GRIMM_L120 (Lesur et al., 2013), radial field to n = 85. Units: nT.
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MF7 - GRIMM_ L120
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Fig: MF7 - GRIMM_ L120, radial field to n = 85. Units: nT.
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Comparison of power spectra
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Fig: Comparison of power spectra of models and differences above degree 40.

18 DTU Space, Technical University of Denmark CHAOS-4 Update 25.8.2013

=
—
=

M



Degree correlation
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Fig: Degree correlation between models.
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Talk Outline

4. Secular variation during the satellite era
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Fit to annual differences of observatory monthly means
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Fig: Fit of time-dep models CHAOS-4c (Olsen et al., 2010) (green) and the updated CHAOS-4
(red) to revised observatory monthly means. Components are plotted in dipole co-ordinates.
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Time-dependence of secular variation
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Fig: SV for a selection of Gauss coefficients. Units : nT /yr.
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North magnetic dip pole and geomagnetic pole

Fig: Tracks of magnetic dip pole (red) and the geomagnetic pole (black), 1999 - 2013.5.
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Core surface radial field in 1999.5
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Fig: Radial field at core surface in 1999.5 to n = 14. Units : nT.
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Core surface radial field in 2013.5
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Fig: Radial field at core surface in 2013.5 to n = 14. Units : nT.
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Core

surface SV in 2013.5

Fig: SV of radial field at core surface in 2013.5 to n = 16. Units : nT/yr.
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SV and SA spectra at core surface
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Fig:SV and SA spectrum for 2008.0 and 2013.5 at core surface.
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Recent rapid SV in the South Atlantic
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Fig: dB,./dt at HER, South Africa. CHAOS-4: red, earlier CHAOS-4«: green.
20135
Fig: Map of dB,./dt at surface in 2013.5. Units: nTJHyr.
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Talk Outline

5. External field: variations with solar cycle?
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RC index
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Fig : RC index since 2010, with decomposition into internal and external parts.

» Derived from hourly spherical harmonic analysis of mid/low latitude ground
observatories, after correction for core field, static external field and observatory bias.
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RC index: zoom in to storm, July 2012
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Fig : Zoom in to show RC index tracking of a storm during July 2012.
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External dipole from satellites: solar cycle dependence?
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Fig : Aq?(t) in SM co-ords estimated from satellite data, this is the correction to RC, derived from

ground data.
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Talk Outline

6. Perspective: Looking forward to Swarm
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Methodological challenges
» Residuals show correlated structures in both space and time: how best to handle?

» Can low altitude/solar min CHAMP data be used to better constrain lithospheric

field? And can we develop more appropriate filtering and regularization schemes?
e.g. Lesur et al. (2013)

» Core MHD suggests that the small length scale field should change more rapidly.
Can we develop field models that are consistent with this prior information?
e.g. Gillet et al. (2013)

Fig: Orsted scalar residuals since 2010.0. Units: nT, scale is saturated.
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Looking forward to ESA’s Swarm mission

Fig: Artist's visualization of Swarm satellites due for launch in late 2013. Credit: ESA

» Improved local time coverage to help unravel puzzling structure of external fields.
» E-W low altitude pair to give definitive answers on n > 80 lithospheric field.

» In combination with better physics-based core field modelling schemes, should
provide improved constraints on the core motions underlying rapid SV.
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Summary
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Presented an updated CHAOS-4 model valid until 2013.5.

Using only low altitude, solar min CHAMP data for the high degree field.

Encouraging agreement between CHAOS-4, MF7 and GRIMM_ L120 to degree 75.

Post-CHAMP, rely on @rsted scalar data and ground station monthly means.

Further rapid field changes in past 7 yrs in the South Atlantic region.

(And of course) we are all looking forward to Swarm!
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