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A prelude: between CHAMP and Swarm

◮ CHAMP data available until September 2010, Swarm still not
launched.....

◮ No vector satellite observations available for about 3 years.

◮ What else is there?

◮ Good old Ørsted is still providing some scalar data!

◮ And the observatories (some now reporting quasi-definitive data)

ISSI Bern, Feb 2013



Ørsted scalar data availability 2011-2013

Fig 1:Availability of OER scalar data 2011-2013.
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A simple test field model

◮ Data: Ørsted scalar 2011-2013, CHAMP vect 2010, revised OMM
2010-2013.
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A simple test field model

◮ Data: Ørsted scalar 2011-2013, CHAMP vect 2010, revised OMM
2010-2013.

◮ Quiet time selection criteria as for CHAOS models.

◮ 6th order splines for SH up to degree 16, 0.5yr knot spacing.

◮ Third time derivative regularization.

◮ Static field to SH degree 50. External field to degree 2.

ISSI Bern, Feb 2013



Ørsted scalar quiet-time data used
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Fig 2:Radial field at the core suface, truncated at degree 13. model.
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Core surface field in 2012.9
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Fig 3:OER scalar data quiet time data used for 2011-2013 model.
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SV and SA spectrum at core surface in 2012.9
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Fig 4:SV and SA spectrum for 2012.9.
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SV of selected coefficients
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Fig 5: SV for selected Gauss coefficients
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Fit to observatory monthly means
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Fig 6: Fit of time-dep model to revised observatory monthly means. Components are plotted in
dipole co-ordinates.
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Residuals - histogram
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Fig 7:Histogram of residuals.
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Residuals - geographical distribution
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Fig 8:Residuals as a function of geographical location.
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Residuals vs time
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Fig 9:OER F residuals vs time (mjd).
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Summary

◮ Ørsted scalar data are available 2011-2013

◮ Now online at
ftp://ftp.space.dtu.dk/data/magnetic-satellites/Oersted/mag-f/

◮ RMS residual at non-polar latitudes 3.59 nT, Huber-weighted RMS
resdiual at non-polar latitudes 2.64nT.

◮ Together with observatory data, Ørsted data can be used to produce
reasonable regularized field models during the gap between CHAMP
and Swarm.
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Can we better quantify uncertainties in the observed
field during the satellite era?
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Probabilistic (Bayesian) approach to field modelling

◮ Recall the geomagnetic forward problem: d = f (m) + e
Statistics of e described by Ce. Prior knowledge on m by Cm.
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◮ Recall the geomagnetic forward problem: d = f (m) + e
Statistics of e described by Ce. Prior knowledge on m by Cm.

◮ Bayesian soln: posterior pdf, given prior knowledge & observations.

◮ Gaussian statistics: find the model m̄ with maximum posterior prob
also spread of posterior pdf by minimizing cost fn:

Θ = [d− f(m)]
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e [d− f(m)] +mTC−1
m m

◮ Do this using an iterative Newton-type algorithm

mi+1 = mi + C
{

∇f (mi)C
−1
e [d− f(mi)]− C−1

m mi

}

where C =
[

∇f (mi)
TCe

−1∇f (mi) + Cm
−1
]

−1

◮ Sample posterior pdf (defined by both m̄ and C) to generate an
ensemble of models characterising the solution.

◮ When no obs, ensemble has statistics specified by prior Cm.
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Stochastic process prior for field modelling
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Stochastic process prior for field modelling

◮ Assume zero mean, stationary, random process.

◮ No covariance between coeffs and identical covariance sequences for
coeffs with same degree.

Cn(τ) = σ2
n ρn(τ)

◮ Set prior variances σ2
n according to previous satellite field models.

◮ Our prior on correlation: ρn(τ) is that of an AR(2) process:

ρn(τ) =

[

1 +
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|τ |
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]

exp

(

−
√
3|τ |
τc

)

Intrisic timescale τc based on τg from previous satellite field models.

◮ Allows discontinuities in d2B/dt2 (’jerks’) & spectral slope f −4.

◮ Algorithm familiar except Cm is dense and no damping parameter.

ISSI Bern, Feb 2013



Spectrum of centennial to decadal time scales
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Fig 10: Spectrum of spot measurements or annual means of D near London 1570-2012.
Best fitting slope 200yrs-2 yrs: -3.27.
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Spectrum of decadal to sub-annual time scales
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Fig 11: Spectrum of monthly means of Y from NGK 1932-2005.
Best fitting slope 20yrs-1yr: -4.05.
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Spectrum of sub-decadal to sub-annual time scales
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Fig 12: Spectrum of revised monthly means of Y from NGK 1997-2011.
Best fitting slope 3yrs-0.25yrs: -4.30.
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Spectrum of sub-decadal to sub-annual time scales
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Fig 13: Spectrum monthly means of Y at virtual obs from CHAMP data at 400km,
2000.6-2010.3. Best fitting slope 3yrs-0.5yrs: -4.33.
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Spectrum of external field (Dst) variations
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Fig 14: Spectrum of Dst hourly means between 1998 and 2012.
Best fitting slope 1yr - 0.01yrs: -0.73.
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What is the physics behind the -4 slope?

◮ AR(2) processes ϕ are the solutions of stochastic differential
equations of the form:

d2

dt2
ϕ− 3

τ2c
ϕ = ǫ(t). (1)

◮ Recent studies of convection driven dynamos (Olson et al., 2012)
find a spectral slope of -2 above 2kyrs decreasing to -4 at periods
less than 2000 yrs and to -6 near 1 year.

◮ Tanriverdi and Tilgner (2011) found that for stable dynamos the
slope of the KE spectral differed by +2 from that of magnetic
energy spectrum.

◮ So is SV just all rotating convection?

◮ What spectral slope would QG or magnetostrophic models predict?
Do MC waves or TO change the slope?
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Convection-driven dynamo composite spectrum

Fig 15: Spectrum from dynamo simulations by Olson et al., 2012.
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A first application to the satellite era: 2007-2013

◮ Using the same approach as the COV-OBS model of Gillet et al.,
2013.

◮ But co-estimating external and high degree static field.

◮ Cubic splines to degree 14, 0.5 year knot spacing.

◮ Static internal field to degree 60. External field to degree 2.

◮ No regularization: using a-prior model covariance matrix.

◮ Based on Matérn function of order 3/2 (i.e. AR(2): the -4 slope.

◮ Variance and time scales given by previous satellite model.
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Ensemble fit to observatory monthly means
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Fig 16: Fit of time-dep model to revised observatory monthly means. Components are plotted in
dipole co-ordinates.
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Ensemble SV for selected coefficients
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Fig 17: SV for selected Gauss coefficients
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Realizations of core surface radial SV in 2012.9
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Discussion and Outlook

◮ Work in progress: needs further testing.

◮ Coherent approx. annual oscillation probably spurious?

◮ Perhaps due to lack of data in summer pole -> lack of orthogonality
between SH and incomplete int/ext separation.

◮ Now need better data error covariance matrix including space and
time correlations.

◮ Approach quantifies change in model fidelity between CHAMP and
Swarm as needed for meaningful data assimilation.

◮ How to couple this to core dynamics models to assimilation of ”real”
satellite data?
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SV and SA spectrum at core surface in 2011: 02i
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Fig :SV and SA spectrum for 2011.0: conventional model.
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SV and SA spectrum at core surface in 2011:02j
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Fig :SV and SA spectrum for 2011.0: ensemble mean model.
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Fit of ensemble of model to obsy annual means
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Fig : Fit of ensemble of COV-OBS field models to observatory annual means from Eskdalemuir
(UK). Red are internal field models only, green includes ext. dipole.
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Secular variation of axial dipole
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Fig : Evolution of axial dipole g0
1 (t) in COV-OBS models.
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Secular variation of higher sectorial coefficient
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Fig:: Time evolution of the g5
5 (t) sectoral coefficient in COV-OBS models.
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Realizations of core surface field in 1920

Fig: Br at core surface in 1920.0 from the COV-OBS model : units µT

◮ Some features are persistently present, others not.
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Model covariance matrix at one epoch

◮ Solution characterized not only by m̄ but also by C

◮ C encapsulates model uncertainties and their correlations btw coeff.
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