Stochastic process priors and satellite era field modelling

Chris Finlay, Nils Olsen, Nicolas Gillet, Dominique Jault & Lars Tøffner-Clausen

 CHAMP data available until September 2010, Swarm still not launched.....

- CHAMP data available until September 2010, Swarm still not launched.....
- ▶ No vector satellite observations available for about 3 years.

- CHAMP data available until September 2010, Swarm still not launched.....
- ▶ No vector satellite observations available for about 3 years.
- What else is there?

- CHAMP data available until September 2010, Swarm still not launched.....
- ▶ No vector satellite observations available for about 3 years.
- What else is there?
- Good old Ørsted is still providing some scalar data!

- CHAMP data available until September 2010, Swarm still not launched.....
- ▶ No vector satellite observations available for about 3 years.
- What else is there?
- Good old Ørsted is still providing some scalar data!
- And the observatories (some now reporting quasi-definitive data)

Ørsted scalar data availability 2011-2013

Fig 1: Availability of OER scalar data 2011-2013.

 Data: Ørsted scalar 2011-2013, CHAMP vect 2010, revised OMM 2010-2013.

- Data: Ørsted scalar 2011-2013, CHAMP vect 2010, revised OMM 2010-2013.
- Quiet time selection criteria as for CHAOS models.

- Data: Ørsted scalar 2011-2013, CHAMP vect 2010, revised OMM 2010-2013.
- Quiet time selection criteria as for CHAOS models.
- ▶ 6th order splines for SH up to degree 16, 0.5yr knot spacing.

- Data: Ørsted scalar 2011-2013, CHAMP vect 2010, revised OMM 2010-2013.
- Quiet time selection criteria as for CHAOS models.
- ▶ 6th order splines for SH up to degree 16, 0.5yr knot spacing.
- Third time derivative regularization.

- Data: Ørsted scalar 2011-2013, CHAMP vect 2010, revised OMM 2010-2013.
- Quiet time selection criteria as for CHAOS models.
- ▶ 6th order splines for SH up to degree 16, 0.5yr knot spacing.
- Third time derivative regularization.
- Static field to SH degree 50. External field to degree 2.

Ørsted scalar quiet-time data used

Fig 2:Radial field at the core suface, truncated at degree 13. model.

Core surface field in 2012.9

Fig 3:OER scalar data quiet time data used for 2011-2013 model.

SV and SA spectrum at core surface in 2012.9

Fig 4:SV and SA spectrum for 2012.9.

SV of selected coefficients

Fig 5: SV for selected Gauss coefficients

Fit to observatory monthly means

dipole co-ordinates.

Residuals - histogram

ISSI Bern, Feb 2013

Residuals - geographical distribution

Fig 8:Residuals as a function of geographical location.

Residuals vs time

ISSI Bern, Feb 2013

Summary

- Ørsted scalar data are available 2011-2013
- Now online at ftp://ftp.space.dtu.dk/data/magnetic-satellites/Oersted/mag-f/
- RMS residual at non-polar latitudes 3.59 nT, Huber-weighted RMS resdiual at non-polar latitudes 2.64nT.
- Together with observatory data, Ørsted data can be used to produce reasonable regularized field models during the gap between CHAMP and Swarm.

Can we better quantify uncertainties in the observed field during the satellite era?

Recall the geomagnetic forward problem: d = f(m) + e
 Statistics of e described by C_e. Prior knowledge on m by C_m.

Recall the geomagnetic forward problem: d = f(m) + e
 Statistics of e described by C_e. Prior knowledge on m by C_m.

Bayesian soln: **posterior pdf**, given prior knowledge & observations.

- Recall the geomagnetic forward problem: d = f(m) + e
 Statistics of e described by C_e. Prior knowledge on m by C_m.
- Bayesian soln: **posterior pdf**, given prior knowledge & observations.
- Gaussian statistics: find the model m
 with maximum posterior prob also spread of posterior pdf by minimizing cost fn:

$$\Theta = \left[\mathbf{d} - \mathbf{f}(\mathbf{m})\right]^{T} \mathbf{C}_{e}^{-1} \left[\mathbf{d} - \mathbf{f}(\mathbf{m})\right] + \mathbf{m}^{T} \mathbf{C}_{m}^{-1} \mathbf{m}$$

- Recall the geomagnetic forward problem: d = f(m) + e Statistics of e described by C_e. Prior knowledge on m by C_m.
- Bayesian soln: **posterior pdf**, given prior knowledge & observations.
- Gaussian statistics: find the model m
 with maximum posterior prob also spread of posterior pdf by minimizing cost fn:

$$\Theta = \left[\mathbf{d} - \mathbf{f}(\mathbf{m})\right]^T \mathbf{C}_e^{-1} \left[\mathbf{d} - \mathbf{f}(\mathbf{m})\right] + \mathbf{m}^T \mathbf{C}_m^{-1} \mathbf{m}$$

Do this using an iterative Newton-type algorithm

$$\begin{split} \mathbf{m}_{i+1} &= \mathbf{m}_i + \mathbf{C} \left\{ \nabla f(\mathbf{m}_i) \mathbf{C}_e^{-1} \left[\mathbf{d} - \mathbf{f}(\mathbf{m}_i) \right] - \mathbf{C}_m^{-1} \mathbf{m}_i \right\} \\ \text{where} \quad \mathbf{C} &= \left[\nabla f(\mathbf{m}_i)^T \mathbf{C}_e^{-1} \nabla f(\mathbf{m}_i) + \mathbf{C}_m^{-1} \right]^{-1} \end{split}$$

- Recall the geomagnetic forward problem: d = f(m) + e Statistics of e described by C_e. Prior knowledge on m by C_m.
- Bayesian soln: **posterior pdf**, given prior knowledge & observations.
- Gaussian statistics: find the model m
 with maximum posterior prob also spread of posterior pdf by minimizing cost fn:

$$\Theta = \left[\mathbf{d} - \mathbf{f}(\mathbf{m})\right]^T \mathbf{C}_e^{-1} \left[\mathbf{d} - \mathbf{f}(\mathbf{m})\right] + \mathbf{m}^T \mathbf{C}_m^{-1} \mathbf{m}$$

Do this using an iterative Newton-type algorithm

$$\mathbf{m}_{i+1} = \mathbf{m}_i + \mathbf{C} \left\{ \nabla f(\mathbf{m}_i) \mathbf{C}_e^{-1} \left[\mathbf{d} - \mathbf{f}(\mathbf{m}_i) \right] - \mathbf{C}_m^{-1} \mathbf{m}_i \right\}$$

where
$$\mathbf{C} = \left[\nabla f(\mathbf{m}_i)^T \mathbf{C}_e^{-1} \nabla f(\mathbf{m}_i) + \mathbf{C}_m^{-1} \right]^{-1}$$

- ► Sample posterior pdf (defined by both m
 and C) to generate an ensemble of models characterising the solution.
- ▶ When no obs, ensemble has statistics specified by prior C_m.

- Assume zero mean, stationary, random process.
- No covariance between coeffs and identical covariance sequences for coeffs with same degree.

$$C_n(\tau) = \sigma_n^2 \rho_n(\tau)$$

- Assume zero mean, stationary, random process.
- No covariance between coeffs and identical covariance sequences for coeffs with same degree.

$$C_n(\tau) = \sigma_n^2 \rho_n(\tau)$$

- Set prior variances σ_n^2 according to previous satellite field models.
- Our prior on correlation: $\rho_n(\tau)$ is that of an AR(2) process:

$$ho_n(au) = \left[1 + \sqrt{3} rac{| au|}{ au_c}
ight] exp\left(-rac{\sqrt{3}| au|}{ au_c}
ight)$$

Intrisic timescale τ_c based on τ_g from previous satellite field models.

- > Assume zero mean, stationary, random process.
- No covariance between coeffs and identical covariance sequences for coeffs with same degree.

$$C_n(\tau) = \sigma_n^2 \rho_n(\tau)$$

- Set prior variances σ_n^2 according to previous satellite field models.
- Our prior on correlation: $\rho_n(\tau)$ is that of an AR(2) process:

$$\rho_n(\tau) = \left[1 + \sqrt{3} \frac{|\tau|}{\tau_c}\right] \exp\left(-\frac{\sqrt{3}|\tau|}{\tau_c}\right)$$

Intrisic timescale τ_c based on τ_g from previous satellite field models. Allows discontinuities in d^2B/dt^2 ('jerks') & spectral slope f^{-4} .

- > Assume zero mean, stationary, random process.
- No covariance between coeffs and identical covariance sequences for coeffs with same degree.

$$C_n(\tau) = \sigma_n^2 \rho_n(\tau)$$

- Set prior variances σ_n^2 according to previous satellite field models.
- Our prior on correlation: $\rho_n(\tau)$ is that of an AR(2) process:

$$\rho_n(\tau) = \left[1 + \sqrt{3} \frac{|\tau|}{\tau_c}\right] \exp\left(-\frac{\sqrt{3}|\tau|}{\tau_c}\right)$$

Intrisic timescale τ_c based on τ_g from previous satellite field models.

- Allows discontinuities in d^2B/dt^2 ('jerks') & spectral slope f^{-4} .
- ► Algorithm familiar except C_m is dense and no damping parameter.

Spectrum of centennial to decadal time scales

Fig 10: Spectrum of spot measurements or annual means of *D* near London 1570-2012. Best fitting slope 200yrs-2 yrs: -3.27.

Spectrum of decadal to sub-annual time scales

ISSI Bern, Feb 2013

Spectrum of sub-decadal to sub-annual time scales

Spectrum of sub-decadal to sub-annual time scales

Fig 13: Spectrum monthly means of Y at virtual obs from CHAMP data at 400km, 2000.6-2010.3. Best fitting slope 3yrs-0.5yrs: -4.33.

Spectrum of external field (Dst) variations

$$\frac{d^2}{dt^2}\varphi - \frac{3}{\tau_c^2}\varphi = \epsilon(t). \tag{1}$$

AR(2) processes φ are the solutions of stochastic differential equations of the form:

$$\frac{d^2}{dt^2}\varphi - \frac{3}{\tau_c^2}\varphi = \epsilon(t). \tag{1}$$

Recent studies of convection driven dynamos (Olson et al., 2012) find a spectral slope of -2 above 2kyrs decreasing to -4 at periods less than 2000 yrs and to -6 near 1 year.

$$\frac{d^2}{dt^2}\varphi - \frac{3}{\tau_c^2}\varphi = \epsilon(t). \tag{1}$$

- Recent studies of convection driven dynamos (Olson et al., 2012) find a spectral slope of -2 above 2kyrs decreasing to -4 at periods less than 2000 yrs and to -6 near 1 year.
- Tanriverdi and Tilgner (2011) found that for stable dynamos the slope of the KE spectral differed by +2 from that of magnetic energy spectrum.

$$\frac{d^2}{dt^2}\varphi - \frac{3}{\tau_c^2}\varphi = \epsilon(t). \tag{1}$$

- Recent studies of convection driven dynamos (Olson et al., 2012) find a spectral slope of -2 above 2kyrs decreasing to -4 at periods less than 2000 yrs and to -6 near 1 year.
- Tanriverdi and Tilgner (2011) found that for stable dynamos the slope of the KE spectral differed by +2 from that of magnetic energy spectrum.
- So is SV just all rotating convection?

$$\frac{d^2}{dt^2}\varphi - \frac{3}{\tau_c^2}\varphi = \epsilon(t). \tag{1}$$

- Recent studies of convection driven dynamos (Olson et al., 2012) find a spectral slope of -2 above 2kyrs decreasing to -4 at periods less than 2000 yrs and to -6 near 1 year.
- Tanriverdi and Tilgner (2011) found that for stable dynamos the slope of the KE spectral differed by +2 from that of magnetic energy spectrum.
- So is SV just all rotating convection?
- What spectral slope would QG or magnetostrophic models predict? Do MC waves or TO change the slope?

Convection-driven dynamo composite spectrum

Fig 15: Spectrum from dynamo simulations by Olson et al., 2012.

A first application to the satellite era: 2007-2013

- Using the same approach as the COV-OBS model of Gillet et al., 2013.
- But co-estimating external and high degree static field.
- Cubic splines to degree 14, 0.5 year knot spacing.
- Static internal field to degree 60. External field to degree 2.
- No regularization: using a-prior model covariance matrix.
- ▶ Based on Matérn function of order 3/2 (i.e. AR(2): the -4 slope.
- Variance and time scales given by previous satellite model.

Ensemble fit to observatory monthly means

dipole co-ordinates.

Ensemble SV for selected coefficients

Fig 17: SV for selected Gauss coefficients

Realizations of core surface radial SV in 2012.9

▶ Work in progress: needs further testing.

▶ Work in progress: needs further testing.

Coherent approx. annual oscillation probably spurious?

- ▶ Work in progress: needs further testing.
- Coherent approx. annual oscillation probably spurious?
- Perhaps due to lack of data in summer pole -> lack of orthogonality between SH and incomplete int/ext separation.

- ▶ Work in progress: needs further testing.
- Coherent approx. annual oscillation probably spurious?
- Perhaps due to lack of data in summer pole -> lack of orthogonality between SH and incomplete int/ext separation.
- Now need better data error covariance matrix including space and time correlations.

- ▶ Work in progress: needs further testing.
- Coherent approx. annual oscillation probably spurious?
- Perhaps due to lack of data in summer pole -> lack of orthogonality between SH and incomplete int/ext separation.
- Now need better data error covariance matrix including space and time correlations.
- Approach quantifies change in model fidelity between CHAMP and Swarm as needed for meaningful data assimilation.

- ▶ Work in progress: needs further testing.
- Coherent approx. annual oscillation probably spurious?
- Perhaps due to lack of data in summer pole -> lack of orthogonality between SH and incomplete int/ext separation.
- Now need better data error covariance matrix including space and time correlations.
- Approach quantifies change in model fidelity between CHAMP and Swarm as needed for meaningful data assimilation.
- How to couple this to core dynamics models to assimilation of "real" satellite data?

SV and SA spectrum at core surface in 2011: 02i

Fig :SV and SA spectrum for 2011.0: conventional model.

SV and SA spectrum at core surface in 2011:02j

ISSI Bern, Feb 2013

Fit of ensemble of model to obsy annual means

Fig : Fit of ensemble of COV-OBS field models to observatory annual means from Eskdalemuir (UK). Red are internal field models only, green includes ext. dipole.

Secular variation of axial dipole

Secular variation of higher sectorial coefficient

Fig: Time evolution of the $g_5^5(t)$ sectoral coefficient in COV-OBS models.

Realizations of core surface field in 1920

Fig: B_r at core surface in 1920.0 from the COV-OBS model : units μT

Some features are persistently present, others not.

Model covariance matrix at one epoch

- \blacktriangleright Solution characterized not only by \bar{m} but also by C
- ▶ C encapsulates model uncertainties and their correlations btw coeff.

Fig : Model covariance matrix in 1925 (bottom) and 2005 (top) from COV-OBS model.