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Motivation: Global vs regional lithospheric field models

• CHAMP: low altitude ∼ 300 km, vector data, from solar
minimum

• Swarm: 5 yrs, data from higher altitudes 440-510 km

• Magnetic anomalies can well determined from gradient estimates

How can we best exploit this data?

• High resolution maps, stable at Earth’s surface

• Global maps convenient, but regional approach has advantages?

• (Revised) spherical cap analysis
[e.g. Thébault, 2006; Thébault et al., 2013, 2016]

• Slepian functions on a sphere
[Simons et al., 2006; Plattner and Simons, 2017]
[Kim and Von Frese, 2017]

This study:
Satellite gradient data, altitude-cognizant gradient vector Slepian functions, L1 regularization of Br at surface
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Forward scheme: Slepian basis functions I

• Following Plattner and Simons (2017), in potential field framework and considering only internal sources

B(r) = ∇V (r) and ∇V (r) =
L∑

l=1

l∑
m=−l

gml Al(r)E lm(r̂)

where E lm(r̂) =
1√

(l + 1)(2l + 1)

[
r̂(l + 1)Ylm(r̂)−∇1Ylm(r̂)

]
for 0 ≤ l ≤ L

and Al(r) = −a−1
√

(l + 1)(2l + 1)
( r

a

)−(l+2)

, for 0 ≤ l ≤ L

• To find optimal basis functions with energy is concentrated a sub-region R, define

K =

∫
R

EL · ET
L dΩ, (1)

where EL are column vectors collecting E lm(r̂).

• Then performing eigenanalysis and retaining only the J largest eigenvalues one can write

KGJ = GJΛJ , with GJ = (g1, . . . , gα, . . . , gJ) with 1 ≤ J ≤ (L+ 1)2 (2)

and the vectors gα define the Slepian basis functions.
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Forward scheme: Slepian basis functions II
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Figure 1. Bandlimited eigenfunctions g(θ,φ) that are optimally concentrated within a circularly symmetric domain of
colatitudinal radius Θ = 18◦ centered on θ0 = 85 ◦ and φ0 = 18◦. The bandwidth is L = 72 and the rounded Shannon
number N = 130. The circle denotes the cap boundary. Blue is positive and red is negative and the color axis is symmetric,
but the sign is arbitrary; regions in which the absolute value is less than one hundredth of the maximum value on the
sphere are left white.

Proc. of SPIE Vol. 7446  74460G-10

[From Simons et al., 2009: 10 largest bandlimited eigenfunctions optimally concentrated within a circularly symmetric domain on sphere]
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Forward scheme: Slepian basis functions III

• Altitude-dependence can then be re-introduced via the vector A(r) that involves the functions Al(r)

G↑J = GT
JA(r)EL, with 1 ≤ J ≤ (L+ 1)2. (3)

• Forward model relating vector field components at satellite altitude to the Slepian model coefficients is then

d̂sat = Gsat
J mJ . (4)

where Gsat
J involves rows of G↑J evaluated using the relevant data locations and components

• Approximate satellite data gradients can also be included by via suitable differences of (4)

• For the results present here we used L = 200, cap half-widths of 15 to 25 degrees and J=1500 to 2500

• Numerical implementation:
Python, based on/tested against SLEPIAN hotel Matlab routines [Plattner and Simons, 2017]
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Inversion: L1-norm regularization

• We wish to estimate Slepian coefficients at Earth’s surface. Such downward continuation is unstable.

• Here we choose a truncation degree J high enough that the majority of the eigenspectrum is captured,
discarding only very small eigenvalues.

• But regularize, also seeking models minimizing the L1 norm of Br the Earth’s surface

Φ =
(
dsat − GsatmJ

)T
Wh

(
dsat − Gsat

J mJ

)
+ α2∥RmJ∥1 (5)

where Wh is a weighting matrix, with QD latitude dependent data error estimates, and iteratively updated
Huber weights and R evaluates Br on an equal area grid at Earth’s surface from mJ

• Implemented via an IRLS scheme [Farquharson and Oldenburg, 1998] involving Wm

mJ,k+1 =
( (

Gsat
J

)T
Wh,kG

sat
J + α2RTWm,kR

)−1
Gsat

J Wh,kd
sat (6)

• Tested with synthetic data, with and without noise added, using LS, L2 and L1 regularizations
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CHAMP and Swarm satellite data

• Extended version of LCS-1 dataset [Olsen et al., 2017]

• Geomagnetic quiet conditions

• Prediction of CHAOS-6-x2 internal field model to degree 14 and
magnetospheric model removed

• CHAMP vector field along-track gradients, 2006 to 2010.

• Altitudes below 350km, solar minimum conditions

• Swarm vector field along & cross-track gradients, 2013 to 2018

• Satellites A, C now at 440 km, longitudinal sep. ∼150 km

• Error budget dependent on QD-latitude and field component,
based on residuals to CHAOS-6-x2 model
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Example 1: West central Africa - Bangui region, Eigenspectrum
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Example 1: West central Africa - Bangui region, L-curve
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Example 1: West central Africa - Bangui region, Results

• LCS1 (sat, global) prediction of Br on equal area grid at Earth’s surface.
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Example 1: West central Africa - Bangui region, Results

• 15 deg cap, L1 regularization of Br on equal area grid at Earth’s surface.
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Example 2: Greenland, L-curve
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Example 2: Greenland, Preliminary Results

• LCS1 (sat, global) prediction of Br on equal area grid at Earth’s surface.
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Example 2: Greenland, Preliminary Results

• 15 deg cap, L1 regularization of Br on equal area grid at Earth’s surface.
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Example 2: Greenland, Preliminary Results

• EMM2015 prediction (sat + aero) of Br on equal area grid at Earth’s surface.
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Discussion

Advantages

• Can easily handle satellite data with varying altitudes, no extra BC to apply

• Inversions manageable: regional datasets and relatively small number of model parameters

• Can fine-tune regularization level appropriate for specific region (i.e. L-curve for each region)

Challenges

• Need to choose a truncation level for the Slepian functions

• Choice of model norm and regularization parameter - more objective prior information?

• Care still needed to avoid edge effects
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Summary

• Slepian functions provide a suitable basis for efficient regional field modelling

• Python implementation including regularization of L1-norm of Br at Earth’s surface

• Applied to along-track and across-track satellite data-differences, with latitude-dependent error estimates

• Initial results promising:

(i) Mid and low latitudes: High amplitude yet stable near strong anomalies, e.g. Bangui
(ii) Polar latitudes: More realistic structures than in similar global models e.g. Greenland.

• Straightforward to apply to other regions of geological interest
e.g. Antarctica, Subduction zones etc.
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Another example: Australia

• LCS1 (sat, global) prediction of Br on equal area grid at Earth’s surface.
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Another example: Australia

• 15 deg cap, L1 regularization of Br on equal area grid at Earth’s surface.
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Another example: Australia

• EMM2015 (sat + aero) prediction of Br on equal area grid at Earth’s surface.
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