Changes in Earth's core-generated magnetic field, as observed by Swarm

Chris Finlay, Nils Olsen, Stavros Kotsiaros, Lars Tøffner-Clausen, Magnus Hammer DTU Space, Technical University of Denmark Nicolas Gillet ISTerre, Université Grenoble 1 and CNRS

DTU Space National Space Institute

The Earth's core-generated magnetic field

- $\bullet > 98\%$ Earth's ${\bf B}$ field originates in the core
- Provides protection from the solar wind
- Generated by dynamo action in the core
- Not steady; continuously changing

[Image credit: ESA]

Investigating Earth's core: the least understood place on the planet

- Core field changes on timescales shorter than decades?
- Structure of flows responsible for generating, and driving the evolution, of the field?

This talk: What have we learnt about the core field from recent Swarm data?

The Swarm satellite trio: a new era in geomagnetism

- A pair of satellites (Alpha, Charlie), flying close together at altitude approx. 460 km
- A third satellite (Bravo) higher up at approx. 500 km, separated in longitude

Other data sources

• Ground observatories:

• The Ørsted and CHAMP missions:

Global field modelling: Forward scheme

- Potential field approach: $\mathbf{B} = -\nabla V$ where $V = V^{\text{int}} + V^{\text{ext}}$.
- The internal part of the potential takes the form

$$V^{\text{int}} = a \sum_{n=1}^{N_{\text{int}}} \sum_{m=0}^{n} \left(g_n^m \cos m\phi + h_n^m \sin m\phi \right) \left(\frac{a}{r}\right)^{n+1} P_n^m \left(\cos \theta\right)$$

• For $n \leq 20$, expand in 6th order B-splines

$$g_n^m(t) = \sum_{k=1}^{K} {}^k g_n^m B_k(t).$$
 (1)

• For the external potential, expand in SM and GSM co-ordinate systems, with θ_d and T_d being dipole co-lat. and dipole local time

$$V^{\text{ext}} = a \sum_{n=1}^{2} \sum_{m=0}^{n} \left(q_n^m \cos mT_d + s_n^m \sin mT_d \right) \left(\frac{r}{a} \right)^n P_n^m(\cos \theta_d)$$

+
$$a \sum_{n=1}^{2} q_n^{0,\text{GSM}} R_n^0(r,\theta,\phi).$$

• Degree-1 coefficients in SM coords dependent on the RC disturbance index

Global field modelling: Estimation

- Work with vector data in magnetometer frame, co-estimating Euler angles
- Use vector and scalar field data AND field spatial differences, along-track and cross track btw *Swarm* A and C
- Select data from **geomagnetically quiet times** using geomagnetic activity indices and (for high latitudes) Interplanetary Magnetic Field and solar wind speed data
- 7,481,013 data in all (3,449,233 from Swarm).
- Robust non-linear least squares including regularization, iteratively minimizing

$$[\mathbf{d} - F(\mathbf{m})]^T \underline{\underline{\mathbf{W}}}^{-1} [\mathbf{d} - F(\mathbf{m})] + \lambda_2 \mathbf{m}^T \underline{\underline{\mathbf{\Lambda}}}_2 \mathbf{m} + \lambda_3 \mathbf{m}^T \underline{\underline{\mathbf{\Lambda}}}_3 \mathbf{m}$$

 $\underline{\underline{W}}$ is a Huber weighting matrix, $\underline{\underline{\Lambda}}_2$ and $\underline{\underline{\Lambda}}_3$ are regularization matrices

- Resulting field model, spanning 1999 2016.5, is CHAOS-6 http://www.spacecenter.dk/files/magnetic-models/CHAOS-6/
- Weighted rms misfit to non-polar, dark *Swarm* scalar data is **2.19 nT**, For scalar field differences, **0.27 nT** along-track and **0.43 nT** cross-track.

Field strength and magnetic pole position in 1999

Field strength and magnetic pole position in 2016.5

Field strength strengthening and weakening in 2015

Rate of change of field strengthening/weakening

2015

10

DTU

Ξ

Rate of change of field strengthening/weakening 2015

Ground observatory series of field strength change

ntii

Downward continuation of field to the core surface

- Wish to understand origin of changes -> need to descend to core
- Possible to downward continue through mantle (Neglecting currents there on these timescales)
- Small scales amplified as approach source
- Field at core surface stable to degree 13 (above this crust dominate)
- Field change (SV) stable to degree 18

[Image credit: A. Jackson]

$$B_{r} = \sum_{n=1}^{N} \sum_{m=0}^{n} (n+1) \left(g_{n}^{m} \cos m\phi + h_{n}^{m} \sin m\phi \right) \left(\frac{a}{r} \right)^{n+2} P_{n}^{m} \left(\cos \theta \right)$$

[CHAOS-6, truncated degree 13]

[CHAOS-6, truncated degree 18]

Power spectrum of SV at core surface

Inferred quasi-geostrophic core flow in 2015

- Assume rotation dominates the core flow (quasi-geostrophy)
- Invert for flow producing observed field changes, using the frozen flux induction eqn:

$$\frac{\partial B_r}{\partial t} = -\nabla_H \cdot (\mathbf{u} B_r)$$

• Ensemble approach: random realizations of unknown small scale field

- Planetary scale anticyclonic gyre, westward at mid/low latitudes under Atlantic
- Regions of intense shear, for example at high latitude under Alaska/Siberia
- 17 DTU Space, Technical University of Denmark

LPS, Prague 2016

Time-dependence of core flow

- Times of azimuthal flow acceleration, correspond to times of rapid field change
- Dynamical origin of oscillations presently unknown

(1) Swarm is monitoring detailed changes in the core-generated magnetic field

- (1) Swarm is monitoring detailed changes in the core-generated magnetic field
- (2) Find clear trends on a decadal time scales
 - Weakening, N. America (3.5% in 17 yrs), Strengthening, N. Asia (2% in 17 yrs)
 - South Atlantic Anomaly: Weakening (2% in 17 years) and moving westward
 - Movement of north pole from N. America towards Asia

- (1) Swarm is monitoring detailed changes in the core-generated magnetic field
- (2) Find clear trends on a decadal time scales
 - Weakening, N. America (3.5% in 17 yrs), Strengthening, N. Asia (2% in 17 yrs)
 - South Atlantic Anomaly: Weakening (2% in 17 years) and moving westward
 - Movement of north pole from N. America towards Asia

(3) Also able to track more rapid inter-annual field accelerations

- Large-scale field fluctuations on inter-annual time scale
- Foci of field acceleration rapidly grow and decay
- Foci with alternating sign e.g. near South Africa, with approx 3 years between

- (1) Swarm is monitoring detailed changes in the core-generated magnetic field
- (2) Find clear trends on a decadal time scales
 - Weakening, N. America (3.5% in 17 yrs), Strengthening, N. Asia (2% in 17 yrs)
 - South Atlantic Anomaly: Weakening (2% in 17 years) and moving westward
 - Movement of north pole from N. America towards Asia

(3) Also able to track more rapid inter-annual field accelerations

- Large-scale field fluctuations on inter-annual time scale
- Foci of field acceleration rapidly grow and decay
- Foci with alternating sign e.g. near South Africa, with approx 3 years between

(4) Downward continuing to the core surface allows study of underlying processes

- Striking intense SV in northern polar region
- Quasi-geostrophic core flows characterized by:
 - (i) planetary scale anticyclonic gyre
 - (ii) strong shear of flow at high latitudes
 - (iii) non-axisymmetric flow oscillations at low latitudes

- (1) Swarm is monitoring detailed changes in the core-generated magnetic field
- (2) Find clear trends on a decadal time scales
 - Weakening, N. America (3.5% in 17 yrs), Strengthening, N. Asia (2% in 17 yrs)
 - South Atlantic Anomaly: Weakening (2% in 17 years) and moving westward
 - Movement of north pole from N. America towards Asia

(3) Also able to track more rapid inter-annual field accelerations

- Large-scale field fluctuations on inter-annual time scale
- Foci of field acceleration rapidly grow and decay
- Foci with alternating sign e.g. near South Africa, with approx 3 years between

(4) Downward continuing to the core surface allows study of underlying processes

- Striking intense SV in northern polar region
- Quasi-geostrophic core flows characterized by:
 - (i) planetary scale anticyclonic gyre
 - (ii) strong shear of flow at high latitudes
 - (iii) non-axisymmetric flow oscillations at low latitudes

(5) A long Swarm mission is crucial to further progress

Swarm vector difference residuals, Along vs Cross track

Vector difference residuals, Swarm vs CHAMP

Example fit of flow to obs data: dB_{ϕ}/dt , HER

24

Time-dependence of core flow (another example)

• Also find non-axisymmetric flow oscillations at low latitudes e.g. $0^{\circ}N$, $40^{\circ}W$

