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The Earth’s core-generated magnetic field

• > 98% Earth’s B field originates in the core

• Provides protection from the solar wind

• Generated by dynamo action in the core

• Not steady; continuously changing

[Image credit: ESA]

Investigating Earth’s core: the least understood place on the planet

• Core field changes on timescales shorter than decades?

• Structure of flows responsible for generating, and driving the evolution, of the field?

This talk: What have we learnt about the core field from recent Swarm data?
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The Swarm satellite trio: a new era in geomagnetism

[Image credit: ESA]

• A pair of satellites (Alpha, Charlie), flying close together at altitude approx. 460 km

• A third satellite (Bravo) higher up at approx. 500 km, separated in longitude
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Other data sources
• Ground observatories:

• The Ørsted and CHAMP missions:
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Global field modelling: Forward scheme
• Potential field approach: B = −∇V where V = V int + V ext.

• The internal part of the potential takes the form

V int = a

Nint∑
n=1

n∑
m=0

(gmn cosmφ+ hmn sinmφ)
(a
r

)n+1
Pm
n (cos θ)

• For n ≤ 20, expand in 6th order B-splines

gmn (t) =

K∑
k=1

kgmn Bk(t). (1)

• For the external potential, expand in SM and GSM co-ordinate systems, with θd and
Td being dipole co-lat. and dipole local time

V ext = a

2∑
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( r
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)n
Pm
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+ a

2∑
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q0,GSM
n R0
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• Degree-1 coefficients in SM coords dependent on the RC disturbance index
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Global field modelling: Estimation

• Work with vector data in magnetometer frame, co-estimating Euler angles

• Use vector and scalar field data
AND field spatial differences, along-track and cross track btw Swarm A and C

• Select data from geomagnetically quiet times using geomagnetic activity indices and
(for high latitudes) Interplanetary Magnetic Field and solar wind speed data

• 7,481,013 data in all (3,449,233 from Swarm).

• Robust non-linear least squares including regularization, iteratively minimizing

[d− F (m)]T W−1[d− F (m)] + λ2mT Λ
2
m + λ3mT Λ

3
m

W is a Huber weighting matrix, Λ
2

and Λ
3

are regularization matrices

• Resulting field model, spanning 1999 - 2016.5, is CHAOS-6

http://www.spacecenter.dk/files/magnetic-models/CHAOS-6/

• Weighted rms misfit to non-polar, dark Swarm scalar data is 2.19 nT,
For scalar field differences, 0.27 nT along-track and 0.43 nT cross-track.
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Field strength and magnetic pole position in 1999
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Field strength and magnetic pole position in 2016.5
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Field strength strengthening and weakening in 2015
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Rate of change of field strengthening/weakening
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Rate of change of field strengthening/weakening 2015
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Ground observatory series of field strength change
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Downward continuation of field to the core surface

• Wish to understand origin of changes
-> need to descend to core

• Possible to downward continue through mantle
(Neglecting currents there on these timescales)

• Small scales amplified as approach source

• Field at core surface stable to degree 13
(above this crust dominate)

• Field change (SV) stable to degree 18
[Image credit: A. Jackson]

Br =

N∑
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Radial field at core surface in 2015

[CHAOS-6, truncated degree 13]
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Radial field SV at core surface in 2015

[CHAOS-6, truncated degree 18]
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Power spectrum of SV at core surface
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Inferred quasi-geostrophic core flow in 2015
• Assume rotation dominates the core flow (quasi-geostrophy)
• Invert for flow producing observed field changes, using the frozen flux induction eqn:

∂Br

∂t
= −∇H · (uBr)

• Ensemble approach: random realizations of unknown small scale field

• Planetary scale anticyclonic gyre, westward at mid/low latitudes under Atlantic
• Regions of intense shear, for example at high latitude under Alaska/Siberia
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Time-dependence of core flow

• Also find non-axisymmetric flow oscillations at low latitudes e.g. -15◦N, 0◦E
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• Times of azimuthal flow acceleration, correspond to times of rapid field change

• Dynamical origin of oscillations presently unknown
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Summary

(1) Swarm is monitoring detailed changes in the core-generated magnetic field

(2) Find clear trends on a decadal time scales

• Weakening, N. America (3.5% in 17 yrs), Strengthening, N. Asia (2% in 17 yrs)
• South Atlantic Anomaly: Weakening (2% in 17 years) and moving westward
• Movement of north pole from N. America towards Asia

(3) Also able to track more rapid inter-annual field accelerations

• Large-scale field fluctuations on inter-annual time scale
• Foci of field acceleration rapidly grow and decay
• Foci with alternating sign e.g. near South Africa, with approx 3 years between

(4) Downward continuing to the core surface allows study of underlying processes

• Striking intense SV in northern polar region
• Quasi-geostrophic core flows characterized by:

(i) planetary scale anticyclonic gyre
(ii) strong shear of flow at high latitudes
(iii) non-axisymmetric flow oscillations at low latitudes

(5) A long Swarm mission is crucial to further progress
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Swarm vector difference residuals, Along vs Cross track
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Vector difference residuals, Swarm vs CHAMP
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Example fit of flow to obs data: dBφ/dt, HER
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Time-dependence of core flow (another example)

• Also find non-axisymmetric flow oscillations at low latitudes e.g. 0◦N, 40◦W
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