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The Earth’s core-generated magnetic field

e > 98% Earth's B field originates in the core
® Provides protection from the solar wind
o Generated by dynamo action in the core

e Not steady; continuously changing

[Image credit: ESA]

Investigating Earth’s core: the least understood place on the planet

e Core field changes on timescales shorter than decades?

e Structure of flows responsible for generating, and driving the evolution, of the field?

This talk: What have we learnt about the core field from recent Swarm data?
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The Swarm satellite trio: a new era in geomagnetism

[Image credit: ESA]

® A pair of satellites (Alpha, Charlie), flying close together at altitude approx. 460 km

e A third satellite (Bravo) higher up at approx. 500 km, separated in longitude

3 DTU Space, Technical University of Denmark LPS, Prague 2016 13.5.2016

=
—
=

M



Other data sources

e Ground observatories:
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Global field modelling: Forward scheme
e Potential field approach: B = —VV where V = Vint 4 yrext,

® The internal part of the potential takes the form

Nint n

yint — g Z Z (9n' cosme + hy' sinmg) (;)n_‘—

n=1m=0

® For n < 20, expand in 6th order B-splines
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® Degree-1 coefficients in SM coords dependent on the RC disturbance index
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Global field modelling: Estimation
® Work with vector data in magnetometer frame, co-estimating Euler angles

e Use vector and scalar field data
AND field spatial differences, along-track and cross track btw Swarm A and C

® Select data from geomagnetically quiet times using geomagnetic activity indices and

(for high latitudes) Interplanetary Magnetic Field and solar wind speed data

® 7,481,013 data in all (3,449,233 from Swarm).

® Robust non-linear least squares including regularization, iteratively minimizing

[d - F(m)]"W™'[d - F(m)] + \am” A m + \sm"A,m

W is a Huber weighting matrix, A2 and Aa are regularization matrices

® Resulting field model, spanning 1999 - 2016.5, is CHAOS-6
http://wuw.spacecenter.dk/files/magnetic-models/CHAOS-6/

o Weighted rms misfit to non-polar, dark Swarm scalar data is 2.19 nT,
For scalar field differences, 0.27 nT along-track and 0.43 nT cross-track.
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http://www.spacecenter.dk/files/magnetic-models/CHAOS-6/
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Field strength and magnetic pole position in 1999

1999
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Field strength and magnetic pole position in 2016.5
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Field strength strengthening and weakening in 2015
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Rate of change

of field strengthening/weakening
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Rate of change of field strengthening/weakening 2015
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Ground observatory series of field strength change
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Downward continuation of field to the core surface

® Wish to understand origin of changes
-> need to descend to core

® Possible to downward continue through mantle
(Neglecting currents there on these timescales)

® Small scales amplified as approach source

o Field at core surface stable to degree 13
(above this crust dominate)

e Field change (SV) stable to degree 18

[Image credit: A. Jackson]
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Radial field at core surface in 2015

[CHAOS-6, truncated degree 13]
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Radial field SV at core surface in 2015
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Power spectrum of SV at core surface

16

10—
10°F
LN
S 10’k
210
£
o
g
o 106,
>
wn
10°F
—— CHAOS-6, 2015
—— CHAOS-4, 2010
. —— CHAOS, 2005
10 Il Il Il T

| I I S I E—
012 3 456 7

DTU Space, Technical University of Denmark

8 9 1011121314151617181920

degree n

LPS, Prague 2016

=
—
=

M

13.5.2016



Inferred quasi-geostrophic core flow in 2015

® Assume rotation dominates the core flow (quasi-geostrophy)
o Invert for flow producing observed field changes, using the frozen flux induction eqn:
0B,
ot
e Ensemble approach: random realizations of unknown small scale field

=—-Vyg - (uBy)
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® Planetary scale anticyclonic gyre, westward at mid/low latitudes under Atlantic

® Regions of intense shear, for example at high latitude under Alaska/Siberia
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Time-dependence of core flow
e Also find non-axisymmetric flow oscillations at low latitudes e.g. -15°N, 0°E
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® Times of azimuthal flow acceleration, correspond to times of rapid field change
e Dynamical origin of oscillations presently unknown
LPS, Prague 2016 13.5.2016
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Summary

(1) Swarm is monitoring detailed changes in the core-generated magnetic field
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Summary

(1) Swarm is monitoring detailed changes in the core-generated magnetic field

(2) Find clear trends on a decadal time scales

® Weakening, N. America (3.5% in 17 yrs), Strengthening, N. Asia (2% in 17 yrs)
e South Atlantic Anomaly: Weakening (2% in 17 years) and moving westward
o Movement of north pole from N. America towards Asia
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e South Atlantic Anomaly: Weakening (2% in 17 years) and moving westward
o Movement of north pole from N. America towards Asia

(3) Also able to track more rapid inter-annual field accelerations

® Large-scale field fluctuations on inter-annual time scale
® Foci of field acceleration rapidly grow and decay
® Foci with alternating sign e.g. near South Africa, with approx 3 years between
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® Large-scale field fluctuations on inter-annual time scale
® Foci of field acceleration rapidly grow and decay
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(4) Downward continuing to the core surface allows study of underlying processes
o Striking intense SV in northern polar region
o Quasi-geostrophic core flows characterized by:
(i) planetary scale anticyclonic gyre
(i) strong shear of flow at high latitudes
(iii) non-axisymmetric flow oscillations at low latitudes
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(4) Downward continuing to the core surface allows study of underlying processes
o Striking intense SV in northern polar region
o Quasi-geostrophic core flows characterized by:
(i) planetary scale anticyclonic gyre
(i) strong shear of flow at high latitudes
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(5) A long Swarm mission is crucial to further progress
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DTU
Swarm vector difference residuals, Along vs Cross track =
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Vector difference residuals, Swarm vs CHAMP
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Example fit o
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Time-dependence of core flow (another example)

® Also find non-axisymmetric flow oscillations at low latitudes e.g. 0°N, 40°W
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