Earth's time-varying core magnetic field from five years of Swarm data

C.C. Finlay, N. Olsen, L. Tøffner-Clausen,

M. Hammer and C. Kloss

DTU Space, Technical University of Denmark

DTU Space National Space Institute

Swarm satellite trio: Five years measuring Earth's magnetic field

- Three identical satellites launched 22nd Nov 2013
- \bullet Swarm A, C now at altitude 440 km, longitudinal sep. ${\sim}150$ km
- Swarm B now at altitude 510 km, differential drift in local time
- Vector (FGM) and absolute scalar (ASM) magnetometers
- Remote scalar calib. of Swarm C from Swarm A since Nov 2014
- Small magnetic disturbance due to thermoelectric currents on satellites. Effect now understood and can be modelled
- Excellent availability of calibrated magnetic data: almost all days since launch suitable for scientific studies

2 DTU Space

Swarm satellite trio: Five years measuring Earth's magnetic field

- Three identical satellites launched 22nd Nov 2013
- \bullet Swarm A, C now at altitude 440 km, longitudinal sep. ${\sim}150$ km
- Swarm B now at altitude 510 km, differential drift in local time
- Vector (FGM) and absolute scalar (ASM) magnetometers
- Remote scalar calib. of Swarm C from Swarm A since Nov 2014
- Small magnetic disturbance due to thermoelectric currents on satellites. Effect now understood and can be modelled
- Excellent availability of calibrated magnetic data: almost all days since launch suitable for scientific studies

CHAOS-6x9 global field model, using Swarm data Nov 2013 - April 2019

- Latest update of CHAOS field model series [Olsen et al., 2014; Finlay et al., 2016]
- Swarm data: MAG L1b 1Hz, version 0505 (vector & scalar field, along/across track diffs)
 - + CHAMP, Ørsted and SAC-C satellite data, all from geomagnetically quiet times
 - + Ground Observatory Revised Monthly Means (AUX_OBS 0119 from BGS), as available in April 2019
- 11,652,019 data in all
- Time-dep. internal field to SH deg 20, static internal field to degree 120.
- Ext field in SM and GSM coords. Time-dep via RC index (with induction), offset params in 5/30 day bins.
- Euler angles describing rotation between VFM and star tracker frame co-estimated
- Model estimation by regularized, robust, non-linear least squares iteratively minimizing

$$\Theta = [\mathbf{d} - F(\mathbf{m})]^T \underline{\mathbf{W}} [\mathbf{d} - F(\mathbf{m})] + \lambda_2 \mathbf{m}^T \underline{\underline{\mathbf{M}}}_2 \mathbf{m} + \lambda_3 \mathbf{m}^T \underline{\underline{\mathbf{M}}}_3 \mathbf{m}$$

- Weighted rms misfit to *Swarm* non-polar, dark scalar data is **2.06 nT**. For scalar field differences, **0.25 nT** along-track and **0.41 nT** cross-track.
- Code to evaluate CHAOS-6-x9 model available in python(ChaosMagPy package), Matlab and Fortran from

http://www.spacecenter.dk/files/magnetic-models/CHAOS-6/

Evolution of field strength at Earth's surface

Time series of Secular Variation around the Pacific: ground and satellite data

6 DTU Space

Time-varying core magnetic field, ESA LVPS, Milan, 14th May 2019

Secular Variation in a global grid of Geomagnetic Virtual Observatories

[GVOs: 4-monthly mean data derived from Swarm, DISC project starting June'19.]

7 DTU Space

Time-varying core magnetic field, ESA LVPS, Milan, 14th May 2019

 \mathbf{A}

Acceleration of radial field at Earth's surface

Spectra of SV and SA power at core surface

9 DTU Space

Acceleration of radial field at core surface

Acceleration of radial field at core surface

[CHAOS-6-x9, to degree 10]

 $d^2B_r/dt^2\,[{\rm nT/yr^2}]$

• Suggestion of oscillations at specific locations and perhaps propagation?

[[]CHAOS-6-x9, to degree 10]

• Suggestion of oscillations at specific locations and perhaps propagation?

DTU

• But this is a **spatially band-limited and temporally filtered** version of the truth.....

 $d^2B_r/dt^2 \left[nT/yr^2 \right]$

[[]CHAOS-6-x9, to degree 10]

• Suggestion of oscillations at specific locations and perhaps propagation?

- But this is a **spatially band-limited and temporally filtered** version of the truth.....
- And SA might not be well defined as averaging time decreases [*Gillet*, 2019]
- Need to push to higher resolution in space and time to test whether features remain coherent

 $d^2B_r/dt^2 \left[{\sf nT/yr}^2 \right]$

[[]SOLA, av. kernel width 42°, 2yr window]

 $d^2B_r/dt^2 \left[{\sf nT}/{\sf yr}^2 \right]$

• Suggestion of oscillations at specific locations and perhaps propagation?

- But this is a **spatially band-limited and temporally filtered** version of the truth.....
- And SA might not be well defined as averaging time decreases [*Gillet*, 2019]
- Need to push to higher resolution in space and time to test whether features remain coherent
- Local inversion of *Swarm*, CHAMP, Cryosat data, with precisely known spatial & temporal av. functions provide alternative *[Hammer, this afternoon]*

[Midpath dynamo model, to degree 9]

- Suggestion of oscillations at specific locations and perhaps propagation?
- But this is a **spatially band-limited and temporally filtered** version of the truth.....
- And SA might not be well defined as averaging time decreases [*Gillet*, 2019]
- Need to push to higher resolution in space and time to test whether features remain coherent
- Local inversion of *Swarm*, CHAMP, Cryosat data, with precisely known spatial & temporal av. functions provide alternative *[Hammer, this afternoon]*
- In numerical dynamo models, arrival of QG Álfven waves at the core surface produces intriguingly similar features [Aubert and Finlay, 2019]

Summary

• Swarm satellites have delivered five years of high quality data; excellent data availability throughout mission

- Swarm satellites have delivered five years of high quality data; excellent data availability throughout mission
- Allowing us to globally track the details of ongoing changes in the core-generated field
 - Intensity changes: weakening North American flux patch
 - Linear pole motion towards Siberia
 - Sub-decadal fluctuations, particularly at low latitudes

- Swarm satellites have delivered five years of high quality data; excellent data availability throughout mission
- Allowing us to globally track the details of ongoing changes in the core-generated field
 - Intensity changes: weakening North American flux patch
 - Linear pole motion towards Siberia
 - Sub-decadal fluctuations, particularly at low latitudes
- Work ongoing to better isolate core signal and to uncover the responsible core dynamics

- Swarm satellites have delivered five years of high quality data; excellent data availability throughout mission
- Allowing us to globally track the details of ongoing changes in the core-generated field
 - Intensity changes: weakening North American flux patch
 - Linear pole motion towards Siberia
 - Sub-decadal fluctuations, particularly at low latitudes
- Work ongoing to better isolate core signal and to uncover the responsible core dynamics
- Expanding opportunities to study geodynamo from satellite observations
 - Lengthening time series of global absolute observations provided by Swarm
 - Unexpected data from platform magnetometers e.g. Cryosat, DMSP, \ldots

CHAOS Field model: Parameterization

- Potential field approach: $\mathbf{B} = -\nabla V$ where $V = V^{\text{int}} + V^{\text{ext}}$.
- The internal part of the potential takes the form

$$V^{\text{int}} = a \sum_{n=1}^{N_{\text{int}}} \sum_{m=0}^{n} \left(g_n^m \cos m\phi + h_n^m \sin m\phi \right) \left(\frac{a}{r}\right)^{n+1} P_n^m \left(\cos \theta\right)$$

• For $n \leq 20$, expand in 6th order B-splines

$$g_n^m(t) = \sum_{k=1}^K {}^k g_n^m B_k(t).$$

• Expand external potential in SM and GSM coordinates, with θ_d and T_d being dipole co-lat. and local time

$$V^{\text{ext}} = a \sum_{n=1}^{2} \sum_{m=0}^{n} \left(q_n^m \cos mT_d + s_n^m \sin mT_d \right) \left(\frac{r}{a} \right)^n P_n^m (\cos \theta_d)$$

+
$$a \sum_{n=1}^{2} q_n^{0,\text{GSM}} R_n^0(r,\theta,\phi).$$

Virtual Observatories: point estimates at satellite altitude

- Time series of monthly point estimates at satellite altitude [Mandea and Olsen, 2006; Olsen and Mandea, 2007; Whaler and Beggan, 2015; Barrois et al., 2018]
- Take data within 700km of cylinder center, every 4 months
- Selection criteria: dark, quiet time data $(K_p < 3, |dRC/dt| < 3nT/hr, IMF B_z > 0, E_m < 0.8 mV/m)$
- Remove estimates of core, crustal, magnetospheric and S_q fields
- Work with sums and differences of data, along and across track

• Robust (Huber weighted) fit of local cubic potential

$$\begin{split} V(x, y, z) &= v_x x + v_y y + v_z z + v_{xx} x^2 + v_y y^2 - (v_{xx} + v_{yy}) z^2 \\ &+ 2 v_{xy} xy + 2 v_{xz} xz + 2 v_{yz} yz - (v_{xyy} + v_{xzz}) x^3 \\ &+ 3 v_{xxy} x^2 y + 3 v_{xxz} x^2 z + 3 v_{xyy} xy^2 + 3 v_{xzz} xz^2 + 6 v_{xyz} xyz \\ &- (v_{xxy} - v_{yzz}) y^3 + 3 v_{yzz} y^2 z + 3 v_{yzz} yz^2 - (v_{xxz} + v_{yyz}) z^3 \end{split}$$

• Calculate prediction at chosen reference point using $\mathbf{B}=-\nabla V$

15 DTU Space

Time-varying core magnetic field, ESA LVPS, Milan, 14th May 2019

Secular variation as seen in ground and satellite data

Time-varying core magnetic field, ESA LVPS, Milan, 14th May 2019

Secular variation as seen in ground and satellite data

Secular variation as seen in ground and satellite data

Time-varying core magnetic field, ESA LVPS, Milan, 14th May 2019

SV at the core surface, to degree 19

