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Swarm satellite trio: Five years measuring Earth’s magnetic field

• Three identical satellites launched 22nd Nov 2013

• Swarm A, C now at altitude 440 km, longitudinal sep. ∼150 km

• Swarm B now at altitude 510 km, differential drift in local time

• Vector (FGM) and absolute scalar (ASM) magnetometers

• Remote scalar calib. of Swarm C from Swarm A since Nov 2014

• Small magnetic disturbance due to thermoelectric currents on
satellites. Effect now understood and can be modelled

• Excellent availability of calibrated magnetic data: almost all days
since launch suitable for scientific studies
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CHAOS-6x9 global field model, using Swarm data Nov 2013 - April 2019

• Latest update of CHAOS field model series [Olsen et al., 2014; Finlay et al., 2016]

• Swarm data: MAG L1b 1Hz, version 0505 (vector & scalar field, along/across track diffs)

+ CHAMP, Ørsted and SAC-C satellite data, all from geomagnetically quiet times
+ Ground Observatory Revised Monthly Means (AUX OBS 0119 from BGS), as available in April 2019

• 11,652,019 data in all

• Time-dep. internal field to SH deg 20, static internal field to degree 120.

• Ext field in SM and GSM coords. Time-dep via RC index (with induction), offset params in 5/30 day bins.

• Euler angles describing rotation between VFM and star tracker frame co-estimated

• Model estimation by regularized, robust, non-linear least squares iteratively minimizing

Θ = [d− F (m)]TW[d− F (m)] + λ2m
TΛ

2
m + λ3m

TΛ
3
m

• Weighted rms misfit to Swarm non-polar, dark scalar data is 2.06 nT.
For scalar field differences, 0.25 nT along-track and 0.41 nT cross-track.

• Code to evaluate CHAOS-6-x9 model available in python(ChaosMagPy package), Matlab and Fortran from

http://www.spacecenter.dk/files/magnetic-models/CHAOS-6/
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Evolution of field strength at Earth’s surface

[Finlay et al., 2016 update, CHAOS-6-x9, to degree 20]
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Surprisingly linear motion of the North Magnetic Pole

[Finlay et al., 2016 update, CHAOS-6-x9, to degree 20]
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Time series of Secular Variation around the Pacific: ground and satellite data
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Secular Variation in a global grid of Geomagnetic Virtual Observatories

−180 −150 −120 −90 −60 −30 0 30 60 90 120 150 180
−90

−60

−30

0

30

60

90

20 nT/yr

[GVOs: 4-monthly mean data derived from Swarm, DISC project starting June’19.]
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Acceleration of radial field at Earth’s surface

[Finlay et al., 2016 update, CHAOS-6-x9, to degree 20]
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Acceleration of radial field at Earth’s surface
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Spectra of SV and SA power at core surface
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[Finlay et al., 2016 update, CHAOS-6-x9]
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Acceleration of radial field at core surface

[Finlay et al., 2016 update, CHAOS-6-x9, to degree 9]
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Acceleration of radial field at core surface
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Acceleration of radial field at core surface
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Evolution of SA at low latitudes, core surface
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[CHAOS-6-x9, to degree 10 ]

• Suggestion of oscillations at specific locations and
perhaps propagation?

• But this is a spatially band-limited and temporally
filtered version of the truth.....

• And SA might not be well defined as averaging time
decreases [Gillet, 2019]

• Need to push to higher resolution in space and time
to test whether features remain coherent

• Local inversion of Swarm, CHAMP, Cryosat data,
with precisely known spatial & temporal av. functions
provide alternative [Hammer, this afternoon]

• In numerical dynamo models, arrival of QG Álfven
waves at the core surface produces intriguingly
similar features [Aubert and Finlay, 2019]
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Evolution of SA at low latitudes, core surface
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• Suggestion of oscillations at specific locations and
perhaps propagation?

• But this is a spatially band-limited and temporally
filtered version of the truth.....

• And SA might not be well defined as averaging time
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Summary

• Swarm satellites have delivered five years of high quality data; excellent data availability throughout mission

• Allowing us to globally track the details of ongoing changes in the core-generated field

- Intensity changes: weakening North American flux patch
- Linear pole motion towards Siberia
- Sub-decadal fluctuations, particularly at low latitudes

• Work ongoing to better isolate core signal and to uncover the responsible core dynamics

• Expanding opportunities to study geodynamo from satellite observations

- Lengthening time series of global absolute observations provided by Swarm
- Unexpected data from platform magnetometers e.g. Cryosat, DMSP, ....
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CHAOS Field model: Parameterization
• Potential field approach: B = −∇V where V = V int + V ext.

• The internal part of the potential takes the form

V int = a

Nint∑
n=1

n∑
m=0

(gmn cosmφ+ hm
n sinmφ)

(a
r

)n+1

Pm
n (cos θ)

• For n ≤ 20, expand in 6th order B-splines

gmn (t) =

K∑
k=1

kgmn Bk(t).

• Expand external potential in SM and GSM coordinates, with θd and Td being dipole co-lat. and local time

V ext = a
2∑

n=1

n∑
m=0

(qmn cosmTd + smn sinmTd)
( r
a

)n
Pm
n (cos θd)

+ a

2∑
n=1

q0,GSM
n R0

n(r, θ, φ).
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Virtual Observatories: point estimates at satellite altitude

• Time series of monthly point estimates at satellite altitude
[Mandea and Olsen, 2006; Olsen and Mandea, 2007; Whaler and Beggan, 2015; Barrois et al., 2018]

• Take data within 700km of cylinder center, every 4 months

• Selection criteria: dark, quiet time data
(Kp < 3, |dRC/dt| < 3nT/hr, IMF Bz > 0, Em < 0.8 mV/m )

• Remove estimates of core, crustal, magnetospheric and Sq fields

• Work with sums and differences of data, along and across track

• Robust (Huber weighted) fit of local cubic potential

V (x, y, z) = vxx + vyy + vzz + vxxx
2
+ vyyy

2 − (vxx + vyy)z
2

+2vxyxy + 2vxzxz + 2vyzyz − (vxyy + vxzz)x
3

+3vxxyx
2
y + 3vxxzx

2
z + 3vxyyxy

2
+ 3vxzzxz

2
+ 6vxyzxyz

−(vxxy − vyzz)y
3
+ 3vyzzy

2
z + 3vyzzyz

2 − (vxxz + vyyz)z
3

• Calculate prediction at chosen reference point using B = −∇V
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Secular variation as seen in ground and satellite data
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Secular variation as seen in ground and satellite data
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SV at the core surface, to degree 19

17 DTU Space Time-varying core magnetic field, ESA LVPS, Milan, 14th May 2019



2000
2002
2004
2006
2008

2010
2012
2014
2016

2009

2006 -3 yr

+3 yr

ep
oc

h

0 1,000 2,000-1,000-2,000

nT.yr-2

−20

−15

−10

−5

0

5

10

15

tim
e 

(y
r)

longitude (oE)

Simulated magnetic acceleration at core surfaceGeomagnetic secular acceleration at core surface
b d

Figure 2
(double column, 180mm)

a c

−180 0 180−90 90
longitude (oE)

−180 0 180−90 90

-1 yr-4 yr fe

0 16 32-16-32
km.yr-2 −30 −20 −10 0 10 20

time (yr)

az
im

ut
ha

l f
lo

w
 

ac
ce

le
ra

tio
n 

(k
m

.y
r-2

)

−60

-20

20

Simulated core surface flow acceleration
2 yr

−40

0

40

jerk
jerk

jerk

2018

jerk

20

jerk

[Aubert and Finlay, 2019]

18 DTU Space Time-varying core magnetic field, ESA LVPS, Milan, 14th May 2019


