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Core dynamics and the geodynamo

Fig 1.1: Schematic of the geodynamo process in Earth’s core (credit: J. Aubert, IPGP)

Long standing quest to understand how deep Earth processes
generate the Earth’s magnetic field and cause its evolution.
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Temporal spectrum of geomagnetic field variations
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Fig 1.2: Temporal spectrum of magnetic field variability. From Constable & Constable (2004).
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Observed geomagnetic field components
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Fig 1.3: Commonly observed components of the geomagnetic field.
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Sensitivity to the core surface magnetic field

Fig 1.4: Z at core surface with Earth’s surface shown together with the relevant Green’s fns.

Each observation is a weighted average of the core surface field
(Gubbins & Roberts, 1983).
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Sensitivity of D, I , F to Br at the core surface.
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Fig 1.5: Averaging Kernel’s showing sensitivity to Br at core surface of D, I and F observations in
central Europe at Earth’s surface. (Plots courtesy of S. Panovska.)
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Paleomagnetic observations

Fig 2.1: Examples of paleomagnetic data sources: Left: Lavas on Hawaii; Middle: archeological
artifacts (Genevey et al., 2009); Right: a lake sediment core.

Magnetization acquired by rocks during formation and artifacts
during production records direction and intensity of the ancient field.
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Temporal distribution of records in past 10kyrs
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Fig 2.2: Time distribution of archeomagnetic and (left) and sediment (right) magnetic records
during the past 10 kyrs (Korte et al., 2011), in 200 yr bins, courtesy of S. Panovska.
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Distribution of sediment magnetic data (10 kyrs)

Fig 2.3: Locations of lake sediment records used to constrain the CALS10K model of Korte et al.
(2011) spanning the past 10kyrs. Stars show locations of new records: Yellow stars for D/I, red

stars or red borders around yellow stars for RPI. Locations of previously used records are blue dots.
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Historical observations

Fig 2.4: e.g. Extract from logbook of ‘King George’ from 2nd July 1719 (Jonkers et al., 2003).
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Example: A famous Yorkshireman

Fig 2.5: Reconstruction of Cook’s Endeavour (left) and a portrait of him in 1776 (right).
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Distribution of historical data (1770-1790)

Fig 2.6: Locations of historical data (all components) between 1770 and 1790 from the Jonkers
et al. (2003) database.
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Ground magnetic observatories

Fig 2.7: Magnetic observatories at Eskdalemuir in the UK (top left), Kourou, French Guyana (top
right), Qeqertarsuaq/Godhavn in Greenland (bot. left) and Hermanus in S. Africa (bot. right).
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Example of instruments in use at observatories

Fig 2.8: D/I fluxgate theodolite, Danish fluxgate variometer, & Overhauser magnetometer (from

ETHZ observatory in development on Gan, Maldives, courtesy of J. Velimsky).
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Observatory distribution in 2010

Fig 2.9: Locations of observatories used in determination of recent internal field models.
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An obsy series: 1st dif. annual means from ESK

Fig 2.10: First differences of annual means for Eskdalemuir observatory, Scotland. This is a
particularly long and high quality record.

Note the sharp changes in slope of dY/dt (i.e. discontinuity in
second time derivative) known as ’jerks’.
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Low Earth orbit satellites

Fig 2.11: Satellites CHAMP (left) and Ørsted (right) measuring the geomagnetic field.

Fig 2.12: Examples of a satellite fluxgate magnetometer (left) and star cameras (right) for
measuring instrument orientation.
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Geographical coverage with 3 days of satellite data
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Fig 2.13: Example showing 3 days of CHAMP vector satellite data from 2009 as used in the
construction of the CHAOS-4a model of Olsen et al. (2012).
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Constructing global models of core surface field

Model core field as potential field with purely internal source,

B = −∇V and ∇ · B = 0

where V (r , θ, φ, t) = a

N
∑
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)n+1

gm
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Account for secular variation using a B-spline basis for Gauss
coefficients,

gm
n (t) =

∑

p

gmp
n Mp(t).

Solve inverse problem by minimizing a cost function: data misfit & a
regularization norm based on core surface field,

Θ = [d− f(m)]TC−1
e [d− f(m)] +R(m).

R(m) is a norm measuring spatial & temporal complexity at CMB.
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Evolution of radial field at the core surface

Fig 3.1: Br at core surface, 1590.0-1990.0, gufm1 (Jackson et al., 2000): units µT
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Evolution of radial field at the core surface

Fig 3.1: Br at core surface, 1590.0-1990.0, gufm1 (Jackson et al., 2000): units µT

- High-latitude flux concentrations.
- Reversed field features at mid-latitudes under South Atlantic.
- Series of intense, westward moving, features at low latitude.
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Characterising the observed core surface field
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Ultimate criteria: full space-time description & covariance estimates
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Induction Eqn: linking field change and core flow

Under the MHD approximation, Maxwell’s equations reduce to:

∂B

∂t
= ∇× (u× B) + η∇2B
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Under the MHD approximation, Maxwell’s equations reduce to:

∂B

∂t
= ∇× (u× B) + η∇2B

Assuming incompressible flow, at the core surface where ur=0:
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1

r2
∂2

∂r2
(r2Br ) +∇2

HBr

]

where ∇H = ∇− (∂/∂r )̂r and η = 1/σµ0 is the magnetic diffusivity.

Further neglecting magnetic diffusion then

∂Br

∂t
+ uH · ∇HBr + Br (∇H · uH) = 0

In this case, field evolves via a ”frozen flux”mechanism
(see Gubbins (1996) or Amit & Christensen (2008) for other approaches)
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Inversion for core flow

Geostrophic flow

20.0 km yr 

–1

Fig 3.2: Example tangentially geostrophic core flow (Holme & Olsen, 2006) that accounts for
much of the observed field change.
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Fit to changes in the length of day
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Fig 3.3: Observed changes in LOD (black line) versus predictions from purple squares = Jault
et al. (1988); blue = Jackson (1997); green = Hide (2000); red = Pais & Hulot (2000), courtesy

of M. Dumberry.

Uses time variations of the equatorially symmetric, zonal flows,
extended rigidly inside the core.
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Stronger assumption: Quasi-geostrophic flow
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Fig 3.4: Example quasi-geostrophic core flow derived using the method of Gillet et al. (2009),
courtesy of A. Pais.
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Fit to lake sediment data
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Fig 4.1: Example of fit of CALS10k.1b model (Korte et al., 2011) to declination D from the Eifel
Maar record, Germany.

Model fits long term trends and most persistent features across
sediment records.
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Time-averaged field, past 10 kyrs
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Fig 4.3: Radial field at CMB averaged over 8000BC to 1500AD, CALS10k.1 (Korte et al., 2011).

Evidence for persistent non-axisymmetric structure over 10 kyrs.

Supports hypothesis that CMB heat flow pattern affects geodynamo.
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Dipole moment variation
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Fig 4.4: Comparison of dipole moment inferred from the GEOMAGIA-50 database (Donadini et al.,
2006) using a VDM appraoch and that inferred from the CALS10k.1 model (Korte et al., 2011).

Dipole moment increased from ∼ 5000BC to ∼ 500BC.

Has been decaying since that time, but not monotonically.
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Fit to observatory data: dZ/dt at HER

Fig 5.1 : Comparison of observed and modelled rate of change of Z field components at
Hermanus, South Africa. Observations are annual differences of month means (grey triangles).
Red solid line is gufm-sat-E3 (Finlay et al., 2012), black dashed line is CHAOS-3 (Olsen et al.,

2010) and pink dashed line is GRIMM-2 (Lesur et al., 2010).
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Core surface radial field in 2005
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Fig 5.2: Radial component of field at core surface in 2005 from gufm-sat-E3 (Finlay et al., 2012).

High latitude patches involve several sub-structures

Flux spot under eastern Indian ocean has intensified in past 20 years.
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Core surface radial field: secular variation in 2005
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Fig 5.3: Radial component of SV at core surface in 2005 from gufm-sat-E3 (Finlay et al., 2012).

Low amplitude field change under the Pacific (Holme et al., 2011).

Most vigourous changes occur outside the tangent cylinder.
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Core surface radial field: secular acceln. in 2005
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Fig 5.4: Radial component of SA at core surface in 2005 from gufm-sat-E3 (Finlay et al., 2012).

Localized pulse of acceleration under eastern Indian ocean in 2006.

Most rapid changes generally occur at low latitudes.
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Global timescales for field change

Ratio of MF and SV power spectra yields a timescale for the field to
entirely change as a function of SH degree (Hulot & LeMouël, 1994).

τg (n) =

√

√

√

√

∑n
m=0 [(g

m
n )2 + (hmn )

2]
∑n

m=0

[

(ġm
n )2 + (ḣmn )

2
] MF timescale
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One can define a similar timescale on which the secular variation
completely changes (Holme et al., 2011)

τġ (n) =

√

√

√

√

√

∑n
m=0

[

(ġm
n )2 + (ḣmn )

2
]

∑n
m=0

[

(g̈m
n )2 + (ḧmn )

2
] SV timescale

May be calculated from time-dependent field models to give a useful
global diagnostic of field change.
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Timescales from satellite era field model

Fig 5.5: Timescales as a function of degree, from the GRIMM-3 model (Christensen et al., 2012).

As pointed out by Holme et al. (2011) an approximately constant
timescale of 10 years is obtained for τġ (n) in present field models.
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Timescales from dynamo simulations

Fig 5.6: Timescale as a function of degree from a dynamo simulation (Christensen et al., 2012).

Rescaling dynamo time to the Earth a similar timescale of 10 yrs can
be obtained for low degrees, provided Rm ∼ 1000.
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A cautionary note: timescales and regularization
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Fig 5.7: Test using perfect coverage of noise-free Z observations at 350km sampled every 0.2yrs:
input allows rapid changes - colours show inversions with different knot spacings and damping

parameters.
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Remarks on field evolution in the satellite era
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Remarks on field evolution in the satellite era

SA occurs in short-lived, localized bursts (Olsen & Mandea, 2008; Lesur et al.,

2008), most notably at low latitudes.

Pacific hemsiphere has weaker field and lower SV and SA (Holme et al.,

2011; Finlay et al., 2012).
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Silva & Hulot (2012) showed zonal flow acceln. is insufficient to account
for field evolution in 2003, in contrast to more general QG flows
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Schaeffer & Pais (2011) suggest permitting stronger (anisotropic) zonal
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Remarks on field evolution in the satellite era

SA occurs in short-lived, localized bursts (Olsen & Mandea, 2008; Lesur et al.,

2008), most notably at low latitudes.

Pacific hemsiphere has weaker field and lower SV and SA (Holme et al.,

2011; Finlay et al., 2012).

Silva & Hulot (2012) showed zonal flow acceln. is insufficient to account
for field evolution in 2003, in contrast to more general QG flows
permitting changes in the (equatorially symmetric) meridional flow.

Schaeffer & Pais (2011) suggest permitting stronger (anisotropic) zonal
flows helps improve fit to changes in the LOD.

Temporal smooothing applied in current field models may filter out
rapid, but physically interesting signals.
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Probabilistic (Bayesian) approach to field modelling

Recall the geomagnetic forward problem: d = f (m) + e
Statistics of e described by Ce. Prior knowledge on m by Cm.
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Probabilistic (Bayesian) approach to field modelling

Recall the geomagnetic forward problem: d = f (m) + e
Statistics of e described by Ce. Prior knowledge on m by Cm.

Bayesian soln: posterior pdf, given prior knowledge & observations.

Gaussian statistics: find the model m̄ with maximum posterior prob
also spread of posterior pdf by minimizing cost fn:

Θ = [d− f(m)]
T
C−1
e [d− f(m)] +mTC−1
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Probabilistic (Bayesian) approach to field modelling

Recall the geomagnetic forward problem: d = f (m) + e
Statistics of e described by Ce. Prior knowledge on m by Cm.

Bayesian soln: posterior pdf, given prior knowledge & observations.

Gaussian statistics: find the model m̄ with maximum posterior prob
also spread of posterior pdf by minimizing cost fn:

Θ = [d− f(m)]
T
C−1
e [d− f(m)] +mTC−1

m m

Do this using an iterative Newton-type algorithm

mi+1 = mi + C
{

∇f (mi)C
−1
e [d− f(mi)]− C−1

m mi

}

where C =
[

∇f (mi)
TCe

−1∇f (mi) + Cm
−1
]

−1
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Probabilistic (Bayesian) approach to field modelling

Recall the geomagnetic forward problem: d = f (m) + e
Statistics of e described by Ce. Prior knowledge on m by Cm.

Bayesian soln: posterior pdf, given prior knowledge & observations.

Gaussian statistics: find the model m̄ with maximum posterior prob
also spread of posterior pdf by minimizing cost fn:

Θ = [d− f(m)]
T
C−1
e [d− f(m)] +mTC−1

m m

Do this using an iterative Newton-type algorithm

mi+1 = mi + C
{

∇f (mi)C
−1
e [d− f(mi)]− C−1

m mi

}

where C =
[

∇f (mi)
TCe

−1∇f (mi) + Cm
−1
]

−1

Sample posterior pdf (defined by both m̄ and C) to generate an
ensemble of models characterising the solution.

When no obs, ensemble has statistics specified by prior Cm.
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Stochastic process prior for field modelling
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Stochastic process prior for field modelling

Assume zero mean, stationary, random process.

No covariance between coeffs and identical covariance sequences for
coeffs with same degree.

Cn(τ) = σ2
n ρn(τ)
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Assume zero mean, stationary, random process.

No covariance between coeffs and identical covariance sequences for
coeffs with same degree.

Cn(τ) = σ2
n ρn(τ)

Set prior variances σ2
n according to satellite field models.

Our prior on correlation: ρn(τ) is that of an AR(2) process:
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−
√
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Intrisic timescale τc based on τg from satellite field models.

SEDI Meeting, Leeds, 3rd July 2012



Stochastic process prior for field modelling

Assume zero mean, stationary, random process.

No covariance between coeffs and identical covariance sequences for
coeffs with same degree.

Cn(τ) = σ2
n ρn(τ)

Set prior variances σ2
n according to satellite field models.

Our prior on correlation: ρn(τ) is that of an AR(2) process:

ρn(τ) =

[

1 +
√
3
|τ |
τc

]

exp

(

−
√
3|τ |
τc

)

Intrisic timescale τc based on τg from satellite field models.
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Stochastic process prior for field modelling

Assume zero mean, stationary, random process.

No covariance between coeffs and identical covariance sequences for
coeffs with same degree.

Cn(τ) = σ2
n ρn(τ)

Set prior variances σ2
n according to satellite field models.

Our prior on correlation: ρn(τ) is that of an AR(2) process:

ρn(τ) =

[

1 +
√
3
|τ |
τc

]

exp

(

−
√
3|τ |
τc

)

Intrisic timescale τc based on τg from satellite field models.

Allows discontinuities in d2B/dt2 (’jerks’) & spectral slope f −4.

Algorithm familiar except Cm is dense and no damping parameter.
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Fit of ensemble of model to obsy annual means
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Fig 6.1: Fit of ensemble of COV-OBS field models (Gillet et al., in prep) to observatory annual
means from Eskdalemuir (UK). Red are internal field models only, green includes ext. dipole.
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Secular variation of axial dipole
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Fig 6.2: Evolution of axial dipole g0
1 (t) in COV-OBS models of (Gillet et al., in prep).
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Secular variation of higher sectorial coefficient

-8

-6

-4

-2

0

2

4

6

1840 1860 1880 1900 1920 1940 1960 1980 2000

dg
55

/d
t (

nT
/y

)

time (y)

ensemble
gufm1

cm4
c3fm2

grimm2
average

Fig 6.3: Time evolution of the g5
5 (t) sectoral coefficient in COV-OBS models (Gillet et al., in prep).
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Realizations of core surface field in 1920

Fig 6.4: Br at core surface in 1920.0 from the COV-OBS model (Gillet et al., in prep) : units µT

Some features are persistently present, others not.
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Model covariance matrix at one epoch

Solution characterized not only by m̄ but also by C

C encapsulates model uncertainties and their correlations btw coeff.
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Fig 6.5: Model covariance matrix in 1925 (bottom) and 2005 (top) from COV-OBS model (Gillet
et al., in prep).

SEDI Meeting, Leeds, 3rd July 2012



Other recent methodological developments

Flux constrained modelling techniques - Wardinski & Lesur (2012).
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Other recent methodological developments

Flux constrained modelling techniques - Wardinski & Lesur (2012).

Important tools for combining core physics-based numerical models
and observation-based field models have been developed:

- Sequential assimilation e.g. Kuang et al. (2009), Aubert & Fournier (2011).

- Variational assimilation e.g. Canet et al. (2009); Li et al. (2011).
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Swarm: A new satellite constellation

Fig 7.1: Artist’s visualization of Swarm satellites due for launch in late 2012. Credit: ESA

ESA’s SWARM mission (due for launch this year) should provide
further high quality global observations in the upcoming years.

Three satellites flying at 400 - 550 km altitude.

Will enable improved characterization of the external field and better
knowledge of azimuthal field gradients (Friis-Christensen et al., 2006).

Aiming at improved resolution of core field time-changes.
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Well-dated archeo/paleo-magnetic records

Fig 7.2: Examples of South African potteries for archeomagnetic analysis (Neukirch et al., 2012).

Ongoing efforts to improve global coverage with well-dated samples.

Urgently need older archeomag records to supplement RPI.
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Detailed comparisons with low E simulations

Fig 7.3: Radial magnetic field at the outer boundary and its time evolution at 15 degrees North
from a simulation with E = 10−6, q = 0.05, Rm = 260. Courtesy of A. Sheyko.

Need to undertake detailed comparisons of space-time field evolution
patterns and not restrict analysis to simple global measures.

A major challenge is now to develop schemes whereby observations
directly constrain more realistic dynamical models.

But need to acknowledge both observations and models are
imperfect - stochastic element necessary? (talk of N. Gillet)
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Conclusions
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Conclusions

Magnetic observations provide information both on the long term
evolution and rapid changes taking place in the core.
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Conclusions

Magnetic observations provide information both on the long term
evolution and rapid changes taking place in the core.

Include indirect paleomagnetic records, historical measurments and
data collected by ground observatories and satellites.

Provide spatial & temporal constraints, but time-varying resolution.

Field models spanning the past 10kyrs show time-averaged
non-axisymmetric structure indicative of CMB (or ICB?) conditions.

Ten years of satellite observation reveals rapid field change occurs
locally in bursts, e.g. low latitudes under the Atlantic.

Beyond simple comparisons, covariances must be propagated when
magnetic observations are used to assess models of the deep Earth.
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Temporal spectrum for Holocene sediments
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Spectrum of field variations derived from Holocene lake sediment records
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Wider geomagnetic environment

Figure 2.4: Schematic of major current systems in the ionosphere (left) andSchematic of electrical currents in the near-Earth environment, produced by interactions with the
solar wind.
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Example: French intensity records (past 800 yrs)

: From Genevey et al. (2009): A high quality, well dated, series of archeointensity determinations
spanning the past 800 years in France.
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Accuracy of maritime declination measurements

1400

1200

1000

800

600

400

200

0

- 3 - 2 - 1 0

error (deg)

sample size = 18 940

s = 0.46°

fr
eq

u
en
cy

(a)

1 2 3

Distribution of deviations of Declination measurments from daily mean, when more than one
measurement taken on a certain day. From Jackson et al. (2000)

SEDI Meeting, Leeds, 3rd July 2012



Determination of declination by mariners

Determinations of declination by mariners. From Jonkers et al. (2003).
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CHAMP Orbit

Local time evolution of the ascending node of the CHAMP orbit.
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Decay of CHAMP Orbit in 2009
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Fig 2.13: Decay of CHAMP altitude in 2009 and 2010. (Plot courtesy of Nils Olsen.)
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Spatial spectrum of the present field: Core & Crust
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Fig 2.14: Spatial spectrum of geomagnetic field in 2010 at Earth’s surface. From the CHAOS-4a
model by Olsen et al. (2012) derived from low altitude CHAMP observations.
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Change in radial field over past 400 years

Br at Earth’s surface from 1590.0 to 1990.0 from the gufm1 model of Jackson et al. (2000) : units
µT
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Downward continuation of radial field to core surface

Fig 1.15: Change in Br during downward continuation (Credit: S. Gibbons)
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Stronger assumption: Quasi-geostrophic flow
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Example quasi-geostrophic core flow derived using the method of Gillet et al. (2009)). From Finlay
et al. (2010), courtesy of A. Pais.
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Holocene evolution of radial field at the core surface

Fig 4.2: Br at core surface, 8000BC-1500AD,CALS10k.1b (Korte et al., 2011): units µT

High latitude flux lobes usually near edge of tangent cylinder.

Patches can oscillate/drift, but often short-lived (Amit et al., 2011).
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Radial field at the core suface to degree 2 (equivalent to eccentric dipole model) in 400BC. Note
offset towards the western hemisphere.
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Other recent highlights - long time scales

Smirnov et al. (2011): ancient paleosecular variation records suggest field
more dipolar 2 - 3.5 billion years ago.
Possible signature of a long-tem change in core conditions?

Ziegler et al. (2011): New model of axial dipole moment for past 2Myrs.
Slightly bimodal distribution - implications for geodynamo?

Axial dipole moment from PADM2M (Ziegler et al., 2011) for 1-2Myrs BP.
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TAFI fit
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Fit to satellite data : CHAMP Y component in 2008
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Fit to observatory data: dX/dt at KOU

Comparison of observed and modelled rate of change of X field components at Kourou, French
Guyana. Observations are annual differences of month means (grey triangles). Red solid line is
gufm-sat-E3 (Finlay et al., 2012), black dashed line is CHAOS-3 (Olsen et al., 2010) and pink

dashed line is GRIMM-2 (Lesur et al., 2010).
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Core field modelling: Entropy regularization

Jaynes (1957) set out the rationale for using maximum entropy to
allocate probabilities in the absence of other information:

”the maximum-entropy estimate ... is the least biased estimate
possible on the given information; i.e. it is maximally non-committal
with regard to missing information”

Often applied to reconstruction of images from incomplete and noisy
data e.g.in astronomy, image processing and medical tomography.

In Geomagnetism:

(i) Assumes there is a finite amount of magnetic flux.
(ii) All possible arrangements assumed equally likely before the data
arrives.
(iii) Consideration of all possible combinations => x ln x factor.
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Evolution of radial field at the core surface

Br at core surface 2000-2010, gufm-sat-E3 Finlay et al. (2012) : units µT
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MF spectra
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SV spectra
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SA spectra
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A cautionary note: timescales and regularization
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Influence of regularization on secular acceleration
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Influence of regularization on τ SV
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Influence of regularization on secular acceleration
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