Comparisons of magnetic data from Swarm and previous missions using CHAOS-5

Chris Finlay, Nils Olsen, Lars Tøffner-Clausen & Stavros Kotsiaros DTU Space, Technical University of Denmark

DTU Space National Space Institute

- 1. Introduction
- 2. Comparisons, CHAOS-5I: 1999-2015
- 3. Comparisons, CHAOS-5h: Sept 2008-2010 & Nov 2013-2014
- 4. Summary

The CHAOS series of field models

DTU

- Models of the near-Earth magnetic field (Olsen et al., 2006, 2009, 2010, 2014)
- ▶ Aims to describe the internal field with high spatial and temporal resolution
- Initially based on CHamp Oersted and Sac-c satellite data -> CHAOS
- Recent versions also include ground observatory secular variation data

Latest update: CHAOS-5 using baseline 0302 Swarm L1b VFM and ASM data
Given importance of Swarm for CHAOS-5, now better to interpret S = Swarm !

Model parameterization

• Potential field approach: $\mathbf{B} = -\nabla V$ where $V = V^{\text{int}} + V^{\text{ext}}$.

The internal part of the potential takes the form

$$V^{\text{int}} = a \sum_{n=1}^{N_{\text{int}}} \sum_{m=0}^{n} \left(g_n^m \cos m\phi + h_n^m \sin m\phi \right) \left(\frac{a}{r}\right)^{n+1} P_n^m \left(\cos \theta\right)$$

▶ Define external potential in SM and GSM co-ordinate systems, with θ_d and T_d being dipole co-lat. and dipole local time

$$V^{\text{ext}} = a \sum_{n=1}^{2} \sum_{m=0}^{n} \left(q_n^m \cos mT_d + s_n^m \sin mT_d \right) \left(\frac{r}{a} \right)^n P_n^m (\cos \theta_d)$$
$$+ a \sum_{n=1}^{2} q_n^{0,\text{GSM}} R_n^0(r,\theta,\phi).$$

▶ Degree-1 coefficients in *SM* coordinates dependent on the the RC index

- ▶ Work with data in magnetometer frame co-estimating Euler angles
- ▶ Robust non-linear least squares including regularization, iteratively minimizing

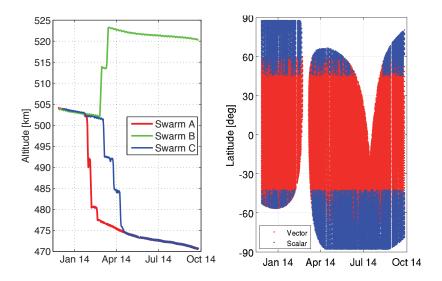
$$[\mathbf{d} - F(\mathbf{m})]^T \underline{\mathbf{W}}^{-1} [\mathbf{d} - F(\mathbf{m})] + \lambda_2 \mathbf{m}^T \underline{\underline{\mathbf{\Lambda}}}_2 \mathbf{m} + \lambda_3 \mathbf{m}^T \underline{\underline{\mathbf{\Lambda}}}_3 \mathbf{m}$$

 $\underline{\underline{\mathbf{W}}}$ is a Huber weighting matrix, $\underline{\underline{\Lambda}}_2$ and $\underline{\underline{\Lambda}}_3$ are regularization matrices

CHAOS-5I: Model setup

- ▶ Night side: data from dark regions, sun 10 deg below horizon
- Quiet times: ($Kp \leq 2o$, $|dD_{st}/dt| \leq 2nT/hr$)
- Vector data below 55 deg quasi-dipole latitude
- ▶ Only use polar data if E_m averaged over preceding 2hrs $\leq 0.8 \text{mV/m}$
- Scale $|\mathbf{B_{VFM}}|$ to be consistent with F_{ASM} (not correct: interim approach!)

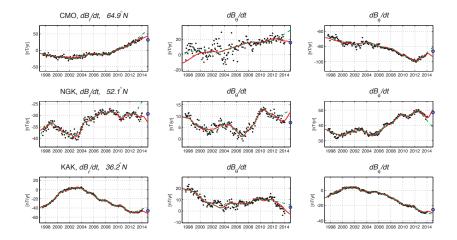
- Model time span: 1999-2015.
- Internal field: degrees 1-20, time-dependent (6th order splines, 0.5 yr spacing)
- Internal field: degrees 20-85, static
- External field, SM part: 5 day bins for q_1^0 , 30 day bins for q_1^1, s_1^1
- Euler angles: co-estimated in 10 day bins for CHAMP, Swarm


CHAOS-5I: Observations

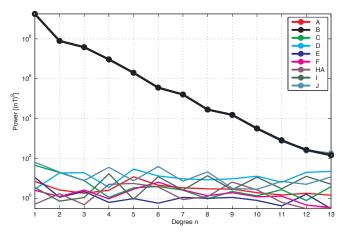
DTU

Selected Swarm data: altitude and latitude coverage

Comparison of misfit statistics for CHAOS-5I


Satellite	Component	Ν	mean [nT]	rms [nT]
Ørsted	$F_{\sf non \ polar}$	367,713	0.16	2.37
	B_r	87,672	0.13	4.47
	$B_{ heta}$		0.23	5.36
	B_{ϕ}		0.00	5.03
CHAMP	$F_{\sf non \ polar}$	497,394	-0.09	2.07
	B_r		0.02	2.77
	$B_{ heta}$		0.10	3.56
	B_{ϕ}		- 0.01	2.71
Swarm A	$F_{\sf non \ polar}$	53,137	-0.01	2.09
	B_r		-0.01	1.83
	$B_{ heta}$		0.18	2.95
	B_{ϕ}		-0.16	2.69
Swarm B	$F_{non polar}$	53,253	0.06	2.07
	B_r		-0.02	1.99
	$B_{ heta}$		0.22	3.00
	B_{ϕ}		-0.13	2.71
Swarm C	F_{non} polar	49,984	0.05	2.09
	B_r		0.02	1.93
	$B_{ heta}$		0.11	3.00
	B_{ϕ}		-0.15	2.71

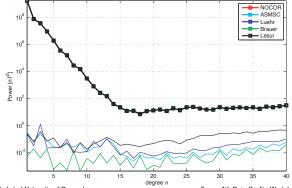
DTU


₩

Model fit to ground observatory SV data

CHAOS-5I power spectra compared to IGRF-2015 candidates

Mean RMS vector field diff across all candidate models: 8.73 nT


- RMS diff DTU and GFZ candidate with disturb. characterization applied: 5.09 nT
- RMS diff DTU and IPGP candidate from vector ASM data: 5.43 nT
- 11 DTU Space, Technical University of Denmark

DTU

Aside: Impact of ASM-VFM residual on field modelling

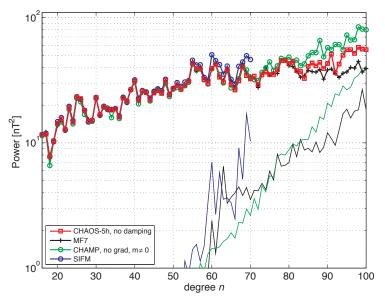
What is the possible impact on IGRF-12 candidates?

- ▶ Input: ASM-VFM task force TDS2 (const. calib) & 3 proposed disturbance models
- ▶ RMS $(F |\mathbf{B}|)$, night, quiet time. Before: 0.48 nT, After corr: 0.13, 0.25, 0.45nT
- Method: CHAOS-type MF+linear SV models with each dataset
- MF: RMS diff to deg 13 with corr. 0.3, 1.2, 1.4 nT (c.f 7.3 nT, IGRF-11)
- SV: RMS diff to deg 8 with corr. 0.7, 3.0, 4.7 nT/yr (c.f 9.3 nT/yr, IGRF-11)

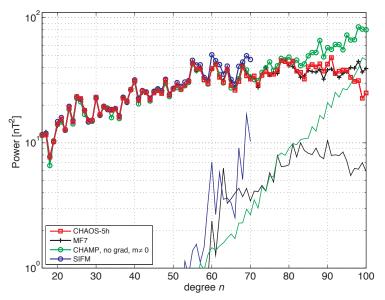
CHAOS-5h: Model setup

- Vector and scalar selection criteria as for CHAOS-5I
- Except only select CHAMP vector data when both star cameras operating
- Scalar NS, EW gradient data as for SIFM (using day-side and higher activity levels)

- Model time span Sept 2008-Sept 2010 & Nov. 2013-Nov 2014
- Internal field: degrees 1-14, time-dependent (2nd order splines, 1 yr spacing)
- Internal field: degrees 15-120, static
- External field, SM part: 0.5 day bins for q_1^0 , 5 day bins for q_1^1 , s_1^1
- Euler angles: co-estimated in 10 day bins for CHAMP, Swarm

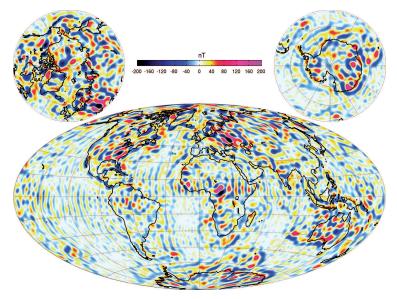

Comparison of misfit statistics for CHAOS-5h

Satellite	Component	Ν	mean [nT]	rms [nT]
CHAMP	$F_{\sf non}$ polar	296,808	-0.02	1.75
	dF non polar	299,796	0.01	0.27
	B_r	296,808	-0.04	1.85
	$B_{ heta}$		-0.05	2.53
	B_{ϕ}		- 0.07	2.13
Swarm A	$F_{\sf non \ polar}$	257,256	0.00	2.26
	dF non polar	352,127	0.01	0.27
	B_r	257,256	-0.01	1.89
	$B_{ heta}$		-0.05	2.91
	B_{ϕ}		-0.05	2.49
Swarm B	Fnon polar	256,924	0.00	2.22
	dF non polar	346,293	0.01	0.25
	B_r	256,924	0.01	1.95
	$B_{ heta}$		-0.09	2.97
	B_{ϕ}		-0.08	2.51
Swarm C	$F_{\sf non \ polar}$	239,608	0.06	2.28
	dF non polar	329,914	0.01	0.27
	B_r	239,608	0.02	1.90
	$B_{ heta}$		-0.15	2.98
	B_{ϕ}		-0.05	2.49

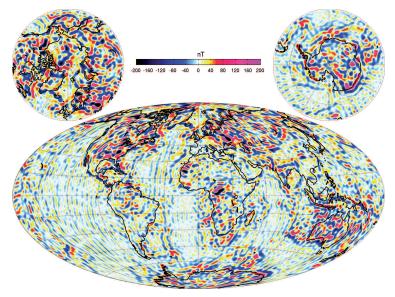

DTU

⊟

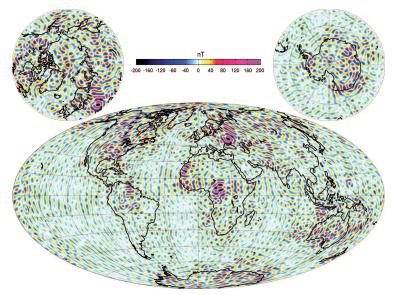
CHAOS-5h: Comparison of power spectra

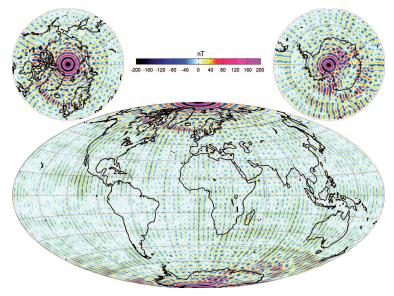


CHAOS-5h: Comparison of power spectra


SIFM


CHAOS-5h


Difference CHAOS-5h to MF7


Difference CHAOS-5h and SIFM

Difference CHAOS-5h to CHAMP, no gradients model

CHAOS-5I model fits 15 yrs of magnetic data from Ørsted, CHAMP and the 3 Swarm satellites as well as ground observatory data.

- CHAOS-5I model fits 15 yrs of magnetic data from Ørsted, CHAMP and the 3 Swarm satellites as well as ground observatory data.
- RMS misfit of Swarm vector data is lower than for previous missions, including 10 yrs of CHAMP data with either 1 or 2 star cameras operating.

- CHAOS-5I model fits 15 yrs of magnetic data from Ørsted, CHAMP and the 3 Swarm satellites as well as ground observatory data.
- RMS misfit of Swarm vector data is lower than for previous missions, including 10 yrs of CHAMP data with either 1 or 2 star cameras operating.
- CHAOS-5h model shows the same static field can fit both low altitude CHAMP data and Swarm data, including their along-track field gradients.

- CHAOS-5I model fits 15 yrs of magnetic data from Ørsted, CHAMP and the 3 Swarm satellites as well as ground observatory data.
- RMS misfit of Swarm vector data is lower than for previous missions, including 10 yrs of CHAMP data with either 1 or 2 star cameras operating.
- CHAOS-5h model shows the same static field can fit both low altitude CHAMP data and Swarm data, including their along-track field gradients.
- The RMS misfit of CHAMP and Swarm along-track scalar field gradients is very similar ~ 0.25 nT.

- CHAOS-5I model fits 15 yrs of magnetic data from Ørsted, CHAMP and the 3 Swarm satellites as well as ground observatory data.
- RMS misfit of Swarm vector data is lower than for previous missions, including 10 yrs of CHAMP data with either 1 or 2 star cameras operating.
- CHAOS-5h model shows the same static field can fit both low altitude CHAMP data and Swarm data, including their along-track field gradients.
- The RMS misfit of CHAMP and Swarm along-track scalar field gradients is very similar ~ 0.25 nT.
- Including CHAMP vector and along-track scalar gradient estimates allow us to improve on the SIFM.

- CHAOS-5I model fits 15 yrs of magnetic data from Ørsted, CHAMP and the 3 Swarm satellites as well as ground observatory data.
- RMS misfit of Swarm vector data is lower than for previous missions, including 10 yrs of CHAMP data with either 1 or 2 star cameras operating.
- CHAOS-5h model shows the same static field can fit both low altitude CHAMP data and Swarm data, including their along-track field gradients.
- The RMS misfit of CHAMP and Swarm along-track scalar field gradients is very similar ~ 0.25 nT.
- Including CHAMP vector and along-track scalar gradient estimates allow us to improve on the SIFM.
- Use of Swarm and CHAMP gradients enables stable models to higher degree and helps resolve the polar gap problem (see also Kotsiaros et al., - in press, GJI).

- Olsen, N., Lühr, H., Sabaka, T. J., Mandea, M., Rother, M., Tø ffner Clausen, L., & Choi, S., 2006. CHAOS— A model of Earth's Magnetic Field derived from CHAMP, ørsted and SAC-C magnetic satellite data, *Geophys. J. Int.*, **166**, 67–75.
- Olsen, N., Mandea, M., Sabaka, T. J., & Tøffner-Clausen, L., 2009. CHAOS-2 A Geomagnetic Field Model Derived from one Decade of Continuous Satellite Data, *Geophys. J. Int.*, **179**(3), 1477–1487.
- Olsen, N., Mandea, M., Sabaka, T. J., & Tøffner-Clausen, L., 2010. The CHAOS-3 Geomagnetic Field Model and Candidates for the 11th Generation of IGRF, *Earth Planets Space*, 62, 719–727.
- Olsen, N., Luehr, H., Finlay, C. C., Sabaka, T. J., & Tø ffner Clausen, L., 2014. The CHAOS-4 geomagnetic field model, *Geophys. J. Int.*, **197**(2), 815–827.

