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Abstract

The upper parts of the Earth are magnetized, giving rise to a lithospheric magnetic field which is
measurable by satellites. This field can be used to study the structure and dynamics of the Earth.
Modelling the Earth’s lithospheric magnetic field is a challenging task. Especially when utilizing
satellite data, due to diminishing of the lithospheric magnetic signature at satellite altitudes. In
this thesis, a Slepian approach to regional magnetic field modelling based on linear combinations
of globally defined real spherical harmonics is used to produce regional models. This method
eliminates the requirement of boundary conditions, simplifying the regional problem greatly. The
primary aim of this thesis is to develop a Python toolbox for performing regional modelling of the
Earth’s lithospheric field with a Slepian approach. The toolbox has been successfully benchmark
tested over the Bangui Anomaly and will be employed over four different regions with lithospheric
magnetic features of geophysical interest; the Bangui Anomaly at low latitudes with a large am-
plitude anomaly, Australia which is a thoroughly investigated region at mid-latitude, the Walvis
Ridge for an oceanic region and lastly Greenland for a high-latitude analysis. Using gradient data
from the Swarm and CHAMP satellites, models are computed over the regions of interest using
the developed Python toolbox. Results are compared to existing global models, to assess the per-
formance of the Slepian approach to regional modelling. There is a good agreement between the
regional models computed here and the existing global models. The high latitude region of Green-
land shows improvement over the LCS-1 model which is a state-of-the-art global model derived
using satellite data, and it also agrees well with the EMM2015 model which in addition to satellite
data utilizes aeromagnetic data. Furthermore, the Slepian approach to regional modelling shows
good agreement with the LCS-1 model over the Bangui Anomaly but with more structure, and
larger amplitudes. It shows good agreement with EMM2015 over Australia, but edge effects were
introduced in this case, suggesting that improvements can be made. The regional model of the
Walvis Ridge shows less agreement with the LCS-1 model, but the larger scale features are com-
patible. Overall, the results obtained using the Slepian approach to regional modelling are very
encouraging, particularly when studying high latitude regions that are often poorly represented in
global models.
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Chapter 1

Introduction

Modelling the Earth’s lithospheric (crustal) magnetic field using satellite data is a challenging en-
terprise due to diminishing of the lithospheric magnetic signature at satellite altitudes. Despite
the challenge, producing high-resolution models is attractive due to the information contained
on crustal geology, such as large-scale tectonic processes, and more regionally the crustal depth,
through the Curie boundary.

Currently, only one satellite mission produces relevant data for lithospheric magnetic field mod-
elling, namely the Swarm mission (Friis-Christensen et al., 2006) (Figure 1.1a). This on-going mis-
sion was launched in 2013. Prior to Swarm was the Challenging Mini-satellite Payload (CHAMP,
see e.g. Maus (2007)) mission (Figure 1.1b). This mission was launched in 2000 and had its at-
mospheric re-entry in 2010. Due to its low altitudes towards the end of the mission, the data is of
high interest for lithospheric magnetic field modelling.

(a) Artist’s impression of the
Swarm constellation. Source:
http://www.esa.int/

spaceinimages/Images/2012/

02/Swarm_constellation.

(b) Artist’s impression of the
CHAMP satellite. Source:
https://www.dlr.de/rd/

en/desktopdefault.aspx/

tabid-2440/3586_read-5330/.

Figure 1.1: Artist’s impressions of the two satellite missions Swarm and CHAMP.

Global magnetic field models are a well-established practice, and the models can be divided into
two classes. One class comprehensively models several magnetic sources all at once, e.g. the core
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Chapter 1. Introduction

field, lithospheric field and the magnetospheric contributions, see Figure 1.2 for an illustration of
sources contributing to the geomagnetic field. This category includes the CHAOS-6 model (Finlay
et al., 2016). The second category involves removing unwanted contributions from the data using a
priori models. The LCS-1 model utilizes CHAOS-6 as an a priori model to remove the unwanted
contributions from the core field and magnetospheric contributions. Model parametrization is done
through an equivalent point source approach (Olsen et al., 2017). With a combination of CHAMP
and Swarm data this model provides greatly detailed maps of the lithospheric magnetic field. A
highly regarded model is the lithospheric magnetic field model (MF7, Maus et al. (2007)), which
exclusively utilizes CHAMP data. This model is parametrized by a spherical harmonic expansion
of the magnetic potential approach. The EMM2015 (https://www.ngdc.noaa.gov/geomag/EMM/)
lithospheric field model combines satellite, aeromagnetic, marine and ground observations. In re-
gions such as Australia where extensive aeromagnetic surveys have been conducted this model is
excellent. However in regions of more sparsely distributed data it seems to fall short (Olsen et al.,
2017). This model is also parametrized by a spherical harmonic expansion of the magnetic potential.

The models discussed above are all global. Another practice within modelling the geomagnetic
field is regional modelling. Producing regional lithospheric magnetic field models utilizing satel-
lite data is challenging, but is practiced in various forms. Thébault et al. (2016) utilize Swarm
data from the first two years of the mission and approaches the regional model through Revised
Spherical Cap Harmonic Analysis (R-SCHA, (Thébault, 2006)). This approach in fact combines
600 regional spherical caps to produce a global model. Thus model parametrization depends on the
spherical caps constructed as well as boundary conditions for each of these caps. The parameters
can be transformed to spherical harmonic Gauss coefficients (internal source spherical harmonic
coefficients), which allows for comparison with other models. A likely challenge with this approach
is the applied boundary conditions to the spherical caps.

A new method for regional modelling of the Earth’s magnetic field has been developed by Plattner
and Simons (2017) and is henceforth referred to as the Slepian approach to regional modelling.
It is a potential field approach that uses linear combinations of real, globally defined spherical
harmonic functions optimized regionally. The linear combination of functions, alongside its ability
to be upwards or downwards continued are called Altitude-Cognizant Gradient Vector Slepian
Functions (AC-GVSF). Despite it being a locally optimized basis, the functions are defined globally,
eliminating the requirement of boundary conditions, which indeed is an attractive feature. The
model parametrization of this approach is based on an expansion of the magnetic potential, with a
twist. The localized spherical harmonic coefficients (Slepian coefficients) are approximated by the
linear combination of global spherical harmonic functions. Because the Slepian functions are based
on real spherical harmonics, the spherical harmonic Gauss coefficients can be retrieved with the
Slepian coefficients.

2
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Chapter 1. Introduction

Figure 1.2: Illustration of the sources of the geomagnetic field. Source: DTU course 30740,
lecture notes.

This thesis introduces a newly developed Python toolbox for producing high resolution regional
models of the Earth’s lithospheric magnetic field, with the Slepian approach utilizing satellite data.
I initialized the development of the Python toolbox in the synthesis project leading up to this thesis,
documented in Rasmus R. Joost (2018). Final development and incorporation of real satellite data
has been performed in this master’s thesis. The toolbox developed will henceforth be referred to as
the Python toolbox. With Python being open source, the Python toolbox can be accessed without
the need of a licensed software, e.g. MATLAB. The implementation includes spherical caps as the
region of choice due to their attractive symmetric properties that will be discussed in this thesis.
Furthermore the data set will be subject to a priori models removing unwanted contributions such
as the core field and the magnetospheric field. Pushing to produce models of spherical harmonic
degree L = 200, corresponding to a wavelength of 200 km, makes this one of the more ambitious
projects in the field.

The data set containing satellite observations is introduced in Chapter 2, where the CHAMP and
Swarm satellites are introduced together with data selection criteria and the regions of interest. The
theory required to produce regional models through the Slepian approach is introduced in Chapter
3. Localized kernel matrices, AC-GVSF and design matrices are defined followed by an introduction

3
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to the inverse problems to be solved. The Python toolbox developed will be introduced in Chapter
4 where key parts of the code is dissected to grant an overview of the implemented methods. A
validation of the toolbox follows the introduction of the toolbox using synthetic data based on the
LCS-1 model (Olsen et al., 2017), which is found in Chapter 5. Regional maps of the lithospheric
magnetic field evaluated at the Earth’s surface, alongside statistics of models that produce these
maps, are introduced in Chapter 6 and discussed in detail in Chapter 7. The discussion will
furthermore introduce strengths and weaknesses of the Slepian approach to regional modelling and
suggestions to its usability. Finally a conclusion is found in Chapter 8 where the findings are
reflected upon with respect to the aim of the thesis, stated in the following section.

1.1 Project Milestones

Presented in this section are the updated milestones presented in the project plan. The original
project plan is found in Appendix A.

1. Literature study.

2. Optimize the Slepian toolbox built in the synthesis project leading up to this thesis such that
the following is achieved:

(a) Computation optimization. Currently, a design matrix for spherical harmonic degree 50
requires more than 60 minutes of computation time. The optimization lies in determi-
nation of associated Legendre functions used in computing the kernel matrix.

(b) Preparation for real data. The toolbox must be prepared to handle satellite ’gradient’
data from Swarm satellites Alpha and Charlie (East-West gradient, across-track), and
CHAMP satellite (North-South gradient, along-track).

(c) Finalize and document toolbox with the aim of a GitHub release.

3. Perform studies of several regions of interest. The study will initially be carried out with
spherical harmonic degree 200. Regions include:

(a) Bangui Anomaly.

(b) Australia.

(c) Walvis Ridge and surrounding younger parts of the South Atlantic.

(d) Greenland.

4. Compare results with other models such as the LCS-1 and EMM2015 models.

5. Document the work.

4



Chapter 2

Data and Regions of Interest

No matter the modelling task at hand, data is always an essential element. Modelling the Earth’s
magnetic field can be challenging using only stationary observatories due to poor coverage of the
globe. This is true even for regional modelling as the observatories within the region may be too
sparsely distributed. The introduction of high quality satellite data provide an excellent opportu-
nity to collect densely distributed data around the globe.

As previously mentioned this thesis makes use of data collected by two missions, the CHAMP
mission (Maus, 2007) and the Swarm mission (e.g. Friis-Christensen et al. (2006) or Olsen et al.
(2016)). The following section briefly introduces these missions and the data set used.

2.1 The CHAMP and Swarm Satellites

The CHAMP and Swarm missions are both near-polar orbits with high inclinations, providing
excellent global coverage. Some orbital information of two missions contributing data to this thesis
are summarized in Table 2.1 (Olsen et al., 2017). The Swarm missions consists of three identi-
cal satellites. Two of these, Swarm Alpha and Swarm Charlie orbit in near identical near-polar
orbits, varying only by approximately 1.4◦ in longitude which is approximately 155 km at the
equator (Olsen et al., 2017). This constellation provides a unique opportunity to observe East-
West differences at satellite altitude. The third Swarm satellite, Swarm Bravo, was launched to a
higher altitude, also with a near-polar orbit. Data from this satellite is not considered in this thesis.

The CHAMP satellite had its atmospheric re-entry in September 2010, and its final altitude is
derived from the data set, with respect to Earth’s mean spherical radius rE = 6371.2 km.

Table 2.1: Summary of the two missions providing data for this thesis. All altitudes listed are
with respect to the Earth’s mean spherical radius.

Launch
Atmospheric

re-entry
Orbital

inclination
Initial

altitude
Final

altitude

CHAMP 2000 2010 87.2◦ 454 km 244.24 km

Swarm Alpha 2013 - 87.4◦ 450 km -

Swarm Charlie 2013 - 87.4◦ 450 km -

5



2.2. The Data Set

Following the orbital information of the two missions is an introduction to the data set used in the
thesis.

2.2 The Data Set

Undeniably, measuring the magnetic field with any sort of instrument will include signals from all
measurable sources. The internal magnetic field of the Earth includes contributions from e.g. the
core magnetic field and the lithospheric magnetic field, with the latter being the contribution to
be investigated in this thesis. By utilizing satellite data, another layer of complexity is introduced;
contributions from sources considered external at Earth’s surface are considered internal at satellite
altitude, and must thus also be handled. As mentioned this thesis will use an a priori model to
remove unwanted contributions. This, alongside other considerations are discussed in the following.

Considering first the satellite altitudes. The amplitude of the lithospheric field is in the hundreds
of nanoTeslas (nT) at the Earth’s surface, where the core field is in the thousands of nT. Moving
towards satellite altitude, the amplitude of the lithospheric field will diminish greatly (Olsen et al.,
2017). CHAMP had an altitude of 350 km or below in the last four years of the mission, which
means this period is particularly interesting for lithospheric field modelling (Olsen et al., 2017).
Thus, data from September 2006 to September 2010 is considered. The two lower Swarm satellites
orbit in constellation from April 2014 with an approximate altitude of 515 km (derived from the
data set) which will be the start of the Swarm data set. Unlike Olsen et al. (2017), this thesis
makes use of an updated data set with 2018 data included, thus expanding the data set utilizing
one additional year of Swarm data.

Satellites provide large amounts of data in varying environments. Proper selection of data is
crucial in order to e.g. remove unwanted signals from effects of the Sun. The criteria applied to
data selection are listed below (extracted from (Olsen et al., 2017))

• Changes in the magnetic signature of the magnetospheric ring current must be less than 3
nT hr−1.

– And the geomagnetic activity index, described by the Kp index, must satisfy Kp ≤ 30.

• Vector observations are included globally (unlike Olsen et al. (2017) where they are limited
to ±55◦ equatorwards with respect to quasi-dipole (QD) latitudes).

– Poleward of ±55◦ QD latitude, vector data is selected when the electric field at the
magnetopause Em ≤ 0.8 mV m−1 and when the direction of the interplanetary magnetic
field is northward (i.e. BZ > 0).

• Only dark data is selected, meaning the sun is at least 10◦ below the horizon.

– With the exception of North-South gradients which include sunlit data. The sunlit data
is not considered around QD latitudes ±10◦ to avoid Equatorial Electrojet contamina-
tion.

The data relevant for magnetic field modelling has now been accounted for. Recall the mea-
surements includes contributions from several sources. Obtaining a data set that consists of the
lithospheric field is done by subtracting models of other contributions, such as magnetospheric and
core field contributions (Olsen et al., 2017). For the core field up to spherical harmonic degree

6
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L = 14 as well as the large-scale magnetospheric field the CHAOS-6 x2 model is used (Finlay et al.,
2016). The main reason for noise in the lithospheric magnetic field data set is potential unmodelled
large-scale magnetospheric contributions (Olsen et al., 2017).

The data set for the lithospheric magnetic field has been constructed, and the following section
introduces satellite gradient data.

2.2.1 Satellite Gradient Data

The arguments for working with gradient data are plenty. For one, gradient data are less affected
by large-scale external field contributions (Olsen et al., 2017). This is a reasonable statement con-
sidering the scales at which these contributions change versus the scale at which the smaller-scale
lithospheric contributions change. Gradient data has proven to be less correlated in time, which
makes a larger portion of the available data useful for gradient data (Olsen et al., 2017).

The gradient data produced for the data set used in this thesis are entirely horizontal, i.e. no radial
gradients are considered (Olsen et al., 2017). The data set contains no magnetic field data, only
gradients, with the field data used to construct the gradient data.

There will be two types of gradients considered for the data set, North-South (NS) and East-West
(EW). The gradients are constructed by differencing data points.

North-South
The North-South gradient has contributions from all three satellites. The gradient is approximated
by (p. 1464 second column in Olsen et al. (2017))

δBNS = B(tj , rj , θj , φj)−B(tj + 15 s, rj + δr, θj + δθ, φj + δφ), (2.1)

where j denotes either one of the three satellites and tj , rj , θj and φj denotes time, altitude, geo-
graphical co-latitude and longitude of an observation, respectively. This states that a subsequent
measurement obtained 15 seconds later by the same satellite is used to approximate along-track
gradient data. The 15 seconds time delay corresponds to an along-track distance of ≈ 115 km or
≈ 1◦ in latitude (Olsen et al., 2017).

East-West
The constellation of the Swarm satellites allow for this EW gradient, which is approximated by (p.
1465 first column, second paragraph in Olsen et al. (2017))

δBEW = BA(t1, r1, θ1, φ1)−BC(t2, r2, θ2, φ2), (2.2)

where BA and BC are Swarm Alpha and Swarm Charlie observations, respectively. Initially, a
Swarm Alpha observation fulfilling the selection criteria is chosen. The Swarm Charlie observation
with the closest co-latitude value is chosen with one additional constraint that the time difference
δt = |t1−t2| must not exceed 50 seconds (Olsen et al., 2017). The subtraction can be changed, such
that a data point from Swarm Alpha is subtracted from the chosen data point from Swarm Charlie.

Amount of data
The total amount of data, and how these are distributed between satellites and type of gradient is
presented in Table 2.2.

7



2.3. Regions of Interest

Table 2.2: Number of data points (NTotal) distributed between the two gradient types.
NCHAMP relates to the CHAMP satellite, NSA to Swarm Alpha and NSC to Swarm Charlie.
δBEW for NSA means BA −BC in Equation (2.2) and BC −BA for NSC.

NCHAMP NSA NSC NTotal

δBNS 477, 020 745, 593 743, 392 1, 966, 005

δBEW - 649, 914 712, 898 1, 362, 812

NTotal 477, 020 1, 395, 507 1, 456, 290 3, 328, 817

The vector gradient data set consists of 3, 328, 817 observations as indicated by the lower right
corner cell of Table 2.2.

The toolbox will be tested at various locations on Earth, these are introduced in the following
section.

2.3 Regions of Interest

Since this thesis introduces a tool used for regional modelling of the Earth’s lithospheric magnetic
field, I have selected some regions with particularly interesting features to investigate.

Bangui Anomaly
The biggest anomaly on Earth which is be located at low latitude. Makes for a good test of low
latitude modelling and how regional models capture this large anomaly. The gradient data used
over this region is presented in Figure 2.1. The Bangui anomaly is very prominent in this region,
with large gradient values over the anomaly itself. It will be interesting to see how the regional
approach captures this large anomaly.

Figure 2.1: Satellite gradient vector data used over the Bangui Anomaly.
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Australia
This country is particularly interesting not only because it has many magnetic anomalies but also
because it has been subject to extensive aeromagnetic survey, making it one of the more well-
studies regions. The gradient data used over this region is presented in Figure 2.2. Australia
contains several larger areas of large gradient signal, which could indicate that many features will
be visible from modelling this region.

Figure 2.2: Satellite gradient vector data used over Australia.

Walvis Ridge
History of tectonic movement lies within the oceanic crust. These isochrones as well as the larger
anomalies in this region makes a great possibility to test oceanic models using the Slepian approach.
The gradient data used over this region is presented in Figure 2.3. Clearly, and as expected, the
most significant gradient signal is obtained over the Walvis Ridge. There are indications of features
in the South South-East region of the spherical cap, and these will be interesting to investigate
further.
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2.3. Regions of Interest

Figure 2.3: Satellite gradient vector data used over the Walvis Ridge.

Greenland
Greenland is a challenging region due to its placement in high latitudes. Models such as LCS-1 shows
difficulty modelling this region, and so testing a regional model is how high interest. Greenland
thus servers not only as an interesting region, but an excellent test of modelling at high latitudes.
The gradient data over this region is presented in Figure 2.4. In this data, cropped to fit over
Greenland, there is a North-East trend starting from approximately (lon, lat) = (60◦ W, 61◦ N).
This is a gradient feature that looks interesting because it is unknown whether it is noise or actual
lithospheric magnetic signal. Otherwise nice large areas in the Northern part of Greenland contains
signal that could show some interesting features.

Figure 2.4: Satellite gradient vector data used over Greenland.

This concludes the introduction to the data set used in this thesis. The following chapter introduces
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2.3. Regions of Interest

the theory required for constructing regional models of the lithospheric magnetic field using this
data set that now includes mostly lithospheric magnetic field signal with the addition of potentially
unmodelled large-scale magnetospheric signals.
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Chapter 3

Theory of Regional Magnetic Field
Modelling

This chapter introduces the necessary theory of regional field modelling using the Slepian approach.
First an introduction to the relevant real spherical harmonics theory will be given, followed by how
this is used in constructing localized kernel and design matrices and thus regional models.

I note that sections 3.1 through 3.3 follows, with modifications, Rasmus R. Joost (2018) in which
I document the initial development of this toolbox.

Unless otherwise stated, notations in the theory will follow that of Plattner and Simons (2017),
following is a summary of these (see also Table 3.1 for a visual overview):

”In what follows we take pains to distinguish ’light’ and ’bold’, uncapitalized and cap-
italized, roman (g, G), italicized (g, G, G), calligraphic (G, G) or script (G ) fonts,
depending on whether the quantity of interest is a column vector or a matrix, a scalar
value or a scalar function or a vector function, a column vector of scalar functions or
of vector functions, or a power spectrum, respectively.” p. 213 Plattner and Simons
(2017).

Table 3.1: Notation look-up table.

Roman Italicized Calligraphic Script

Light Bold Light Bold Light Bold Light Bold

Uncapitalized
Column
vector

-
Scalar
value

- - - - -

Capitalized - Matrix
Scalar

function
Vector

function

Column vector
of

scalar functions

Column vector
of

vector functions

Power
Spectrum

-
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3.1. Scalar Potential Fields and Real Spherical Harmonics

3.1 Scalar Potential Fields and Real Spherical Harmonics

Utilizing satellite observations when modelling the Earth’s magnetic field, a quantity typically
measured is the magnetic field vector B (Plattner and Simons, 2017). The sources contributing
to the magnetic field are divided into two main categories, one related to internal sources and one
related to external sources, see Figure 1.2. Gradients of internal source scalar potential field ∇V
and external source scalar potential field ∇W are related to the vectorized geomagnetic field B by

B(rr̂) = ∇V (rr̂) +∇W (rr̂), (3.1)

providing V and W satisfies Laplace’s equation

∇2 [V (rr̂) + W (rr̂)] = 0, (3.2)

which amongst others Blakely (1996) presents a solution for.

The external source scalar potential field W is henceforth omitted from the theory introduced, as
this does not originate from the lithospheric magnetic field. Expressing ∇ = r̂∂r + r−1∇1 and
∇1 = θ̂∂θ + φ̂(sin(θ))−1∂φ in Equation (3.1), the gradient of V expands into

∇V (rr̂) =
∞∑
l=0

l∑
m=−l

−r−1
p

(
r

rp

)−l−2

gml

[
r̂(l + 1)Ylm (r̂)−∇1Ylm (r̂)

]
, (3.3)

where rp denotes the reference radius of a planet, r is an arbitrary radius, l are spherical harmonic
degrees, and gml are internal source spherical harmonic coefficients at reference radius rp (Plattner
and Simons, 2017).

The internal-field gradient vector spherical harmonics E lm(r̂) are given by jointly orthonormalizing
the expression in the square bracket of Equation (3.3) (Equation (15) in Plattner and Simons (2017),
derived from Freeden and Schreiner (2009) Equations (5.309) and (5.310))

E lm(r̂) =
1√

(l + 1)(2l + 1)

[
r̂(l + 1)Ylm(r̂)−∇1Ylm(r̂)

]
for 0 ≤ l ≤ L, (3.4)

where L is the maximum spherical harmonic degree. The Ylm(r̂) term in Equation (3.4) is defined
as

Ylm(r̂) = Ylm(θ, φ) =


√

2Xl|m|(θ) cos(mφ) if − l ≤ m < 0

Xl0(θ) if m = 0√
2Xl|m|(θ) sin(mφ) if 0 < m ≤ l,

(3.5)

where θ and φ are colatitudes and longitudes, respectively (see Equation (B.72) in Dahlen and
Tromp (1998)). The Xl|m|(θ) term introduced in Equation (3.5) is defined as

Xlm(θ) = (−1)m
(

2l + 1

4π

)1/2 [(l −m)!

(l +m)!

]1/2

Plm(cos(θ)), (3.6)

where Plm(cos(θ)) are associated Legendre functions and l and m are the angular degrees and or-
ders of the spherical harmonic, respectively (see Equation (B.58) in Dahlen and Tromp (1998)).

13



3.2. A Slepian Approach to Regional Modelling

Using Equation (3.4) and introducing a spherical harmonic degree dependent continuation operator,
the potential is rewritten as

∇V (rr̂) =
∞∑
l=0

l∑
m=−l

Al(r) gml E lm(r̂), (3.7)

where the continuation operator Al is given by

Al(r) = −r−1
p

√
(l + 1)(2l + 1)

(
r

rp

)−l−2

, for 0 ≤ l ≤ L, (3.8)

collected in the continuation operator vector A(r) spanning over all spherical harmonic degrees up
to and including L.

The relevant real spherical harmonics have now been accounted for, and the following section will
introduce how these are used in regional potential field modelling with the Slepian approach.
Furthermore, the following sections introduces silent notation where for example A(rs) = A is
the continuation operator at satellite altitude. Thus unless otherwise stated, radially dependent
components will be considered at satellite altitude.

3.2 A Slepian Approach to Regional Modelling

The construction of a kernel matrix is crucial in potential field modelling. This matrix provides
the mathematical link between satellite observations and model parameters to be estimated. This
section introduces how globally defined real spherical harmonics are utilized to define localized
kernel matrices and from that obtain AC-GVSF that will be a key element in linking mathematics
to observations.

A localized kernel matrix K is in continuous form defined, like Plattner and Simons (2017) does in
their Equation (34), as

K = A(rp)

(∫
R
EL · ETL dΩ

)
A(rp)

T , (3.9)

where |·| denotes the inner products applied to each element pair of vector or matrix vector func-
tions, T denotes the transpose, and EL = (E00, . . . ,Elm, . . . ,ELL)T collects E lm for all l where
0 ≤ l ≤ L (note that E is a bold, capital, and calligraphic E, i.e. a column vector of vector functions,
with vector entries given in Equation (3.4)). The integration is over a subregion, R, of the unity
sphere, Ω. I note that this localized kernel matrix is independent of data and can be computed
prior to any analyses. K has matrix entries (Equation (13) in Plattner and Simons (2015)) given
by

Klm,l′m′ = Al(rp)

(∫
R
E lm ·E l′m′ dΩ

)
Al′(rp), (3.10)

and dimensions (L + 1)2 × (L + 1)2 and is a real, symmetric, and positive definite matrix. At
high spherical harmonic degree and satellite altitude the localized kernel matrix becomes highly
ill-conditioned (Plattner and Simons, 2017). This issue is addressed by a singular value decom-
position (SVD, see e.g. Section 3.1 of Aster et al. (2013)) approach. Working with eigenvector
decomposition of K and focusing only on relatively large eigenvalues and their well-determined
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3.2. A Slepian Approach to Regional Modelling

eigenvectors the kernel matrix becomes better conditioned (Plattner and Simons, 2017). A trunca-
tion parameter J is introduced that satisfies J ≤ (L+ 1)2.

Working with the truncated eigenvector decomposition and considering the properties of K, its
eigenvectors are orthogonal, and when orthonormalized the eigenvector decomposition is

KGJ = GJΛJ , (3.11)

where ΛJ is a diagonal matrix with descending real-valued eigenvalues of K with 1 < λ1 ≤ λ2 ≤
. . . ≤ λJ , and columns of the GJ matrix are sorted eigenvectors of K. Column entries of G are
denoted gα, and are arranged (Equation (37) in Plattner and Simons (2017))

GJ = (g1, . . . , gα, . . . , gJ), (3.12)

where the remaining eigenvectors (gJ+1, . . . , gα, . . . , g(L+1)2) and eigenvalues (λJ+1, . . . , λα, . . . , λ(L+1)2)

have been cut out. Instead of the full dimension of (L+1)2× (L+1)2, the matrix has been reduced
to dimension (L + 1)2 × J . The GJ matrix makes up the Slepian basis. This basis is used to
construct the AC-GVSF as described below.

Each gα of Equation (3.12) contains a set of spherical harmonic coefficients

gα = (g00,α, . . . , glm,α, . . . , gLL,α)T , (3.13)

which can be expanded into the gradient vector spherical harmonic basis and thus defining AC-
GVSF by (Equation (41) in Plattner and Simons (2017))

Gα(rpr̂) =
L∑
l=0

l∑
m=−l

Al(rp)glm,αE lm(r̂). (3.14)

It is noted, that G↑α is capital, bold and italic, making it a matrix vector function.

Vector functions of Equation (3.14) are collected in a column vector of vector functions to include
all AC-GVSF up to and including J (Equation (42) in Plattner and Simons (2017))

GJ =
(
G1, . . . ,Gα, . . . ,GJ

)T
= GT

JA(rp)EL, with 1 ≤ J ≤ (L+ 1)2. (3.15)

Equation (3.15) can be upwards continued by applying a radius r > rp in the continuation operator,
which will be useful when constructing the design matrix used in the inverse problem

G↑J =
(
G↑1, . . . ,G↑α, . . . ,G↑J

)T
= GT

JA(r)EL, with 1 ≤ J ≤ (L+ 1)2. (3.16)

The truncation parameter J is an essential part of constructing a good model. This parameter
is a measure of how many globally defined real spherical harmonic functions are combined to
construct the localized kernel matrix. It directly affects the amount of AC-GVSF constructed
which will impact the inverse problem introduced in the following section. A good choice of J is
not straight-forwardly achieved and I use diagnostic tools introduced in Section 5.1.1 and 3.4 to
obtain indications of whether the choices made are good or not.
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3.3. The Inverse Problem

3.3 The Inverse Problem

The purpose of this thesis is to produce regional models of the lithospheric magnetic field. Therefore
relating theory to practice is of high relevance. Generally speaking, the inverse problem requires a
design matrix which relates model parameters to satellite observations. This matrix is related to
the localized kernel matrix introduced in the previous section, and what follows in this section is
how the AC-GVSF obtained from the localized kernel matrix are utilized in constructing the design
matrix required to solve the inverse problem.

Traditionally in potential field modelling of the lithospheric magnetic field the estimated model
parameters are the Gauss coefficients gml (see e.g. Olsen et al. (2017)). These are globally op-
timized model parameters. This thesis introduces the Slepian model parameters mJ . These are
regionally optimized model parameters. The truncation parameter J is noted in the subscript of
the Slepian model parameters. For each AC-GVSF used to construct the design matrix, and thus
used to describe the regional lithospheric magnetic field, an additional Slepian model parameter
must be accounted for. However, for spherical harmonic degree L = 185 there are 34, 595 Gauss
coefficients to account for. The Slepian approach offers a significant reduction in amount of model
parameters which will become evident later in this thesis.

Recall that the localized kernel matrix introduced in Equation (3.9) is in continuous form. Satellite
observations are obtained at discrete locations and not continuously. Under the assumption that
observation locations are dense within a region, the localized kernel matrix can remain in its
continuous form (Plattner and Simons, 2017). If the assumption does not hold, Equation (3.9)
needs to be defined discretely. Some discretization is nevertheless necessary, and it is achieved by
evaluating the E lm at data locations, and upwards continue to satellite altitudes[

Esat
lm,i

]
c

= Al(ri)E lm(r̂i) · ĉ, (3.17)

where ĉ denotes indexing for the radial, colatitudinal and longitudinal unit vectors, and i denotes
the i’th datum. [Esat

lm,i]c is assembled into contributions from the three components by

[
Esat

]
c

=


[
Esat

00,1

]
c

. . .
[
Esat

00,k

]
c

...
. . .

...[
Esat
LL,1

]
c
. . .

[
Esat
LL,k

]
c

 into Esat =
( [

Esat
]
r

[
Esat

]
θ

[
Esat

]
φ

)
, (3.18)

and the dimensions of Esat is (L + 1)2 × 3k, where k denotes the length of e.g. radial component
of the data vector (Equation (84) in Plattner and Simons (2017)).

Through the Slepian approach a design matrix is obtained by multiplying Equation (3.18) with the
Slepian basis from Equation (3.12)

Gsat
J =

(
GT
J Esat

)T
, (3.19)

which is a key ingredient in posing the inverse problem to be solved. A statement of the inverse
problem follows, minimizing the L2-norm of the data misfit, which is the difference between satellite
observations and model prediction (Equation (86) in (Plattner and Simons, 2017))
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3.3. The Inverse Problem

arg min
mJ

‖Gsat
J mJ − d‖2, (3.20)

where mJ is a vector of Slepian model parameters to be estimated, and d is a vector containing
satellite vector observations (see Chapter 2 for an introduction of the data). This is in fact an
optimization problem on a regional scale. This translates to the more well-known least squares
(LS) problem ((

Gsat
J

)T
Gsat
J

)
mJ =

(
Gsat
J

)T
d. (3.21)

Equation (3.21) defines a J × J symmetric system with its condition number dependent on the
truncation, J (Plattner and Simons, 2017).

The model prediction is a vector with 3k entries, where each k set of vector entries represent radial,
colatitudinal and longitudinal components, respectively, and is obtained by

dsatpred = Gsat
J mJ . (3.22)

Producing model predictions at the Earth’s surface requires producing a design matrix at the
Earth’s surface. This is obtained by evaluating the E lm at a fine coordinate grid with the Earth’s
mean spherical radius as evaluation radius,

G
rp
J =

(
GT
J Erp

)T
, (3.23)

where rp = 6371.2 km, the mean spherical radius of the Earth, followed by multiplying the model
parameters onto this design matrix

d
rp
pred = G

rp
J mJ . (3.24)

The internal source spherical harmonic Gauss coefficients can be retrieved using the Slepian ap-
proach by

gml = GJ mJ , (3.25)

which will be further discussed in Section 3.4.

With the regionally optimized inverse problem accounted for, the localized gradient inverse problem
will be introduced. Since gradient satellite data is the data of choice, and as such the inverse problem
must be looked further into.

3.3.1 Localized Gradient Inverse Problem

Minor modifications must be made to the inverse problem, such that it allows for gradient satellite
data to be utilized. Because data is differenced along-track or across-track (see Chapter 2 for data
introduction), so must design matrices be differenced to construct a localized gradient design ma-
trix. Like Olsen et al. (2017) the gradient design matrices are constructed by differencing design
matrices with sets of positions corresponding to those used to obtain the gradient data.

Initially considered is the gradient predictions at satellite altitude

d1 − d2 =
(
Gsat

1,J −Gsat
2,J

)
mJ (3.26)
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3.3. The Inverse Problem

or more compactly written

dgrad = Gsat
grad mJ , (3.27)

which compared with Equation (3.22) states that the same J set of model parameters obtained
using non-gradient data and design matrices can be obtained through gradient data and design
matrices. Equation (3.21) is rewritten to include the gradient data and localized design matrices
by ((

Gsat
grad,J

)T
Gsat
grad,J

)
mJ = Gsat

grad,J dgrad. (3.28)

Going forward only localized gradient design matrices alongside vector gradient data will be dis-
cussed in relation to solving the inverse problems.

3.3.2 Robust Estimation

Gross outliers and along-track or across-track correlations in satellite gradient observations are
expected. Furthermore, the simple LS solution assumes Gaussian distributed noise, which is rarely
the case in satellite observations. A method of handling outliers is by introducing data weights
with the Iteratively Re-weighted Least Squares (IRLS) method (Constable, 1988).

The IRLS method introduces a new term Wh in the LS algorithm((
Gsat
J

)T
WhG

sat
J

)
mJ =

(
Gsat
J

)T
Whd, (3.29)

where [Wh]i,i = wh,i/σ
2
i , where wh,i are huber weights and σ2

i are data variances. Huber weighting
will be the method of choice in this thesis as also noted in the subscript of Wh.

If Wh = I i.e. the data weight matrix is the identity matrix the LS algorithm is obtained.

Huber weights are computed using

whuber ∝


c/e e > c

1 |e| ≤ c
−c/e e < −c

(3.30)

where c = 1.5 is a breakpoint constant and e is a data misfit vector (Huber, 1996). Another usual
value used is c = 1.345 which produces 95% efficiency for Gaussian distributed noise.

Since the process is iterative it is not unlikely that the first iteration is the LS solution. From that
the weights are updated with each iteration until some convergence criteria is met. In this thesis
the convergence criteria will be based on the two-norm of the model parameters. When a change
less than 0.01 per-cent is achieved, the process is terminated and the final weights are thus chosen.

Robust estimation is an excellent method of handling non-Gaussian noise in satellite data. In high
resolution modelling the noise distribution is not the only issue to overcome. Regularization will
be the method of choice to overcome these challenges presented in the following section.
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3.3.3 Regularization

Working with real satellite observations constructing high resolution models requires regularization.
This is not only due to complex distributed noise and how it scales at high spherical harmonic de-
gree, causing instability in models, but these problems may also be highly ill-conditioned. Recall
Section 3.2 where it is introduced that the localized kernel matrix becomes highly ill-conditioned
at high spherical harmonic degree and satellite altitudes. This sufficiently indicates that the simple
LS or IRLS methods will not suffice for this thesis.

The regularization problem introduces a cost function to be minimized

Φ = Φdata + α2Φmodel, (3.31)

where Φdata is a function related to the L2-norm of the data misfit (the LS solution) and Φmodel is
a function related to some Lp-norm of the model (the model regularization term). Expanding the
two terms to be minimized and introducing robust estimation yields

Φ(mJ,α) =
(
d−Gsat

J mJ,α

)T
Wh

(
d−Gsat

J mJ,α

)
+ α2‖RmJ,α‖p, (3.32)

where α2 is a regularization parameter, R is a regularization matrix and p is an integer determining
what norm to minimize, i.e. p = 1 means the L1-norm of the model is minimized. Henceforth this
thesis will be concerned with p = 1 and p = 2 only.

The cost function in fact introduces a trade-off between minimizing the L2-norm of the data misfit
and the model Lp-norm. With a very small α2 the solution approaches the LS solution, while a
very large α2 will minimize the Lp-norm of the model.

3.3.3.1 L2-norm Model Regularization

One of the model norm regularizations considered in this thesis is the L2-norm. This method ef-
fectively minimizes |Br|2, i.e. the squared radial component of the lithospheric magnetic field over
the region of interest (Olsen et al., 2017).

The cost function introduced in Equation (3.32) is adjusted to the p = 2 solution

Φ(mJ,α,L2) =
(
d−Gsat

J mJ,α,L2

)T
Wh

(
d−Gsat

J mJ,α,L2

)
+ α2‖RmJ,α,L2‖2

=
(
d−Gsat

J mJ,α,L2

)T
Wh

(
d−Gsat

J mJ,α,L2

)
+ α2mT

J,α,L2
RTRmJ,α,L2 .

(3.33)

The solution to minimizing Equation (3.33) becomes( (
Gsat
J

)T
WhG

sat
J + α2RTR

)
mJ,α,L2 = Gsat

J Whd, (3.34)

and solving this for the model parameters yields the algorithm

mJ,α,L2 =
( (

Gsat
J

)T
WhG

sat
J + α2RTR

)−1
Gsat
J Whd. (3.35)

The algorithm is solved with the IRLS approach, updating data weights until convergence, for a
range of α2 values. The range of models produced are used to provide insights in choosing a good
value for α2, which is not a trivial task. For each model the model norm ‖mJ,α,L2‖ and residual
norm ‖d−Gsat

J mJ,α,L2‖ are produced using
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‖mJ,α,L2‖ = mJ,α,L2R
TRmJ,α,L2 (3.36)

‖d−Gsat
J mJ,α,L2‖ =

(
d−Gsat

J mJ,α,L2

)T
Wh

(
d−Gsat

J mJ,α,L2

)
, (3.37)

which can be used to produce an L-curve (Aster et al., 2013). The L-curve is an excellent tool for
visualizing the trade-off between minimizing the data misfit L2-norm and the model Lp-norm.

Because data uncertainties are known, the discrepancy principle is worth investigating (Aster et al.,
2013). The discrepancy principle suggests choosing α2 that produces the simplest model whose data
misfit agrees with the data uncertainty. This is obtained by(

d−Gsat
J mJ,α,L2

) (
d−Gsat

J mJ,α,L2

)
= Nσ2, (3.38)

where N is the total amount of data, and σ2 are data variances. With discrepancy normalized data
misfit, the chosen α2 will be the value that produces data misfit norm equal to one.

3.3.3.2 L1-norm Model Regularization

The second type of regularization used in this thesis is the L1-norm model regularization, which
effectively minimizes |Br| over the region of interest (Olsen et al., 2017). Minimizing the L1-norm
of the model is more complicated than minimizing the L2-norm of the model. The L1-norm of the
model enforces sparsity in an attempt to fit the data using as few model parameters as possible
(Chris Finlay, 2017). This requires implementing model weights, which will be introduced in the
following.

The cost function associated with the L1-norm model regularization is

Φ(mJ,α,L1) =
(
d−GsatmJ,α,L1

)T
Wh

(
d−Gsat

J mJ,α,L1

)
+ α2‖RmJ,α,L1‖1

=
(
d−Gsat

J mJ,α,L1

)T
Wh

(
d−Gsat

J mJ,α,L1

)
+ α2mT

J,α,L1
RTWmRmJ,α,L1 ,

(3.39)

where Wm is a model weight diagonal matrix. These weights make use of Ekblom’s measure as
introduced by Farquharson and Oldenburg (1998). Diagonal matrix entries are for the L1-norm
model regularization defined as

[Wm]i,i =
1(

(RmJ,α,L1)2 + ε2
)1/2 , (3.40)

where RmJ,α,L1 is a model prediction of the radial component of the magnetic field at Earth’s
surface for a given set of model parameters mJ,α,L1 and ε is Ekblom’s measure. ε = 10−6 nT is a
value selected to ensure numerical stability for very small values of the predicted field.
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The solution to minimizing Equation (3.39) is( (
Gsat
J

)T
WhG

sat
J + α2RTWmR

)
mJ,α,L1 = Gsat

J Whd, (3.41)

and solving this for the model parameters yields the algorithm

mJ,α,L1 =
( (

Gsat
J

)T
WhG

sat
J + α2RTWmR

)−1
Gsat
J Whd, (3.42)

which is a non-linear system of equations due to Wm being dependent on the model parameters
(Chris Finlay, 2017). The L1-norm model regularization is more complicated as a consequence of
this non-linearity. The approach for solving Equation (3.42) follows that of the IRLS where now
both data weights Wh and model weights Wm are updated with each iteration.

L-curves and the discrepancy principle are used for this method and model norm ‖mJ,α,L1‖ and
data misfit norm ‖d−Gsat

J mJ,α,L1‖ are computed by

‖mJ,α,L1‖ = mJ,α,L1R
TWmRmJ,α,L1 (3.43)

‖d−Gsat
J mJ,α,L1‖ =

(
d−Gsat

J mJ,α,L1

)T
Wh

(
d−Gsat

J mJ,α,L1

)
. (3.44)

The discrepancy principle will also be worth investigating for the L1-norm model regularized solu-
tion. It is much alike Equation (3.38) with only model parameters changed(

d−Gsat
J mJ,α,L1

) (
d−Gsat

J mJ,α,L1

)
= Nσ2. (3.45)

This concludes the two regularization methods utilized in this thesis. What follows is a brief
explanation to a subject only mentioned in both L1-norm and L2-norm model regularization: the
regularization matrix.

3.3.3.3 Regularization Matrix

In geomagnetism problems the regularization matrix is typically a prediction of the radial com-
ponent of the Earth’s magnetic field at mean spherical radius on a regular grid used as a-priori
knowledge to the model (Olsen et al., 2017). The grid must be regular to avoid convergence issues
near the poles. This thesis uses the icosahedral approach to constructing a regular grid as intro-
duced in e.g. Baumgardner and Frederickson (1985).

An potential issue that must be accounted for is aliasing. Aliasing in spherical harmonic analysis is
where higher spherical harmonic degrees (i.e. smaller length-scales) can not be distinguished from
lower spherical harmonic degrees (i.e. larger length-scales). When aliasing occurs, the power of
certain spherical harmonic degrees may be misinterpreted as power from other spherical harmonic
degrees. A coarse grid will likely cause aliasing while a fine grid will more easily distinguish various
length-scales (Gubbins, 2004).

The number of points needed to avoid aliasing at spherical harmonic degree L = 200 on a global
grid can be found in Table 2 in Kother (2017) who states that at least 51, 000 points are required.
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3.4 The Geomagnetic Power Spectrum

Mauersberger (Mauersberger, 1956) and Lowes (Lowes, 1966) demonstrated how the variance of
the total magnetic field can be divided into sums of individual contributions (Maus, 2008). This
variance is called the Mauersberger-Lowes spectrum and is defined as

Rl = (l + 1)
(re
r

)2l+4
l∑

m=−l

(
gml
)2
, (3.46)

where re = 6371.2 km is the mean spherical radius of the Earth and gml are internal source Gauss
coefficients.

The Mauersberger-Lowes spectrum is globally defined on the spherical approximation of the Earth.
Furthermore, the spherical harmonic Gauss coefficients are required to compute this spectrum.

The power spectra computed by Equations (3.46) and (3.51) are not comparable. The localized
internal source Gauss coefficients retrieved via Equation (3.25) can be applied in Equation (3.46)
for an approximated global power spectrum. Because the area over which the localized Gauss
coefficients are computed is not global a correction must be introduced. The fraction of the spherical
cap surface area with respect to Earth’s spherical surface area is computed by determining first

h = re (1− cos(θ)) (3.47)

r =
√

2reh− h2, (3.48)

which combines to the spherical cap surface area

scap = π
(
r2 + h2

)
. (3.49)

The spherical surface area of the Earth is

searth = 4πr2
e , (3.50)

and the ratio of Equations (3.50) and (3.49) respectively provides the scaling required to approx-
imate the localized internal source Gauss coefficient power over the entire globe. This diagnostic
tool provides an excellent opportunity of investigating whether the model parameters are stable,
and how the power of a certain region is distributed across the spherical harmonic degrees consid-
ered.

Locally, the power spectrum of each AC-GVSF is defined by (Equation (38) in Plattner and Simons
(2017))

G α(l) =
1

2l + 1

l∑
m=−l

g2
lm,α, (3.51)

which provides an excellent opportunity of investigating the power distribution of the AC-GVSF
which serves as a diagnostic tool for choosing the Slepian truncation parameter J .
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Chapter 4

Implementation as a Python Toolbox

This chapter introduces the Python toolbox developed, which is a toolbox built for producing
regional models of magnetic fields with a Slepian approach. Implementations of key parts of the
theory is discussed and presented in the following, where computation of Legendre functions, kernel
matrices, design matrices and the inverse problem and data selection within a region are consid-
ered. The fundamentals of the Python toolbox builds on an existing MATLAB toolbox developed
by Alain Plattner (2017).

First an introduction to the flow of the Python toolbox is presented in Figure 4.2. Explanations
of the flow chart icons is found in Figure 4.1. When computing regional models using this Python
toolbox, an initialization script is first run. This contains information of location of the spherical
cap (region of interest), spherical harmonic degree of the analysis, the Slepian truncation parameter
J and regularization parameters. Next satellite data within the chosen region is extracted from the
data set described in Chapter 2.

The Python toolbox regularly saves large matrices to avoid unnecessary re-computation. There-
fore,the next step is a try-statement, which initially searches for existing kernel matrix, design
matrix and eigenvalues. If this fails, it will go on to another try-statement, finding kernel matrix
and eigenvalues alone. If the first try statement is successful the Python toolbox will move directly
to the inversions. If it the second try-statement succeeds a design matrix will be computed based
on the loaded kernel matrix. If this try-statement fails, both kernel matrix, design matrix and
eigenvalues will be computed.

Whether design matrix and kernel matrix are computed or loaded, the next step is choosing the
type of inversion. These choices are specified in the initialization script, and it is possible to choose
to perform LS, L1-norm and L2-norm regularization individually, in pairs or all at once. Prior to
inversions the regularization matrix is computed (not used for LS).

When model parameters have been obtained, prediction maps are created and plotted, visualiz-
ing the results. Furthermore diagnostics such as power spectra can be computed for the model
parameters and data misfit.
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4.1. Computing Legendre Functions

Figure 4.1: Flow chart icons.

Figure 4.2: Python toolbox flow chart. Orange colored icons indicates a try statement, green
icons computations and blue icons miscellaneous.

The flow chart shown in Figure 4.2 contains the general overview, with many black boxes performing
various tasks. In the following sections the development of the key elements of the Python toolbox
will be described.

4.1 Computing Legendre Functions

In spherical harmonic analysis a key aspect of constructing a kernel matrix is the computation of
Legendre functions, as the Legendre functions are associated with the Xlm of Equation (3.6).

Initially another toolbox was utilized to calculate the Legendre functions, called GMT tools written
by Nils Olsen1 (see Appendix F). The GMT tools toolbox includes a function called get Pnm() that
outputs Legendre functions and derivatives with respect to co-latitude for all spherical harmonic
degrees and orders up to nmax in a 3D tensor. The function uses the recursion scheme from Langel
(1987) in their Equation (27) and Table 2.

The implementation of the recursion scheme is shown in Listing 4.1. The GMT tools toolbox re-
sulted was used in the first iteration of the Python toolbox, for all computations of Legendre

1Professor of Geophysics, Division of Geomagnetism, DTU Space. http://www.space.dtu.dk/english/service/
phonebook/person?id=38306&cpid=45460&tab=1.
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4.1. Computing Legendre Functions

functions. One of the milestones in this project, was the optimization of the Python toolbox in
order to produce high resolution models. During development, as documented in Rasmus R. Joost
(2018), I had issues with computation times being extraordinarily high even for a low spherical
harmonic case.

I located the issue being in the construction of the kernel matrix, and more specifically when com-
puting Legendre functions for the radial spherical harmonic functions, later introduced in Section
4.2. Prior to the newly implemented solution, these were computed using the get Pnm() function
from the GMT tools toolbox. The computation time of a kernel matrix of spherical harmonic degree
L = 50 was one hour. Computing a kernel matrix of degree L = 200 was never attempted with
this solution. To bring down the computation time, a rewritten version of the function get Pnm()

called get Pm() was implemented, and can also be found in the GMT tools toolbox (Appendix
F). This implementation was necessary because the input co-latitudes changes between iterations,
so one comprehensive computation using get Pnm() will not suffice. It computes only Legendre
functions for a given spherical harmonic order m up to a given degree Lmax satisfying Lmin > m,
also with respect to input co-latitudes. No co-latitudinal derivatives are computed. This simplifies
the output to a 2D array and reduces the computation time of a spherical harmonic degree L = 50
kernel matrix to two minutes, 30 times faster than the first iteration. A kernel matrix of spherical
harmonic degree L = 200 takes between 13-18 hours to compute, depending on the size of the cap.
This serves as a good indication that high resolution modelling would be a tedious task without
the implemented optimization. The new implementation is introduced in Listing 4.2

Listing 4.1: get Pnm() from Appendix F.

1 import numpy as np
2 def get Pnm (nmax , theta ) :
3 ”””
4 C a l c u l a t i o n o f a s s o c i a t e d Legendre f u n c t i o n s P(n ,m) ( Schmidt

normal ized )
5 and i t s d e r i v a t i v e dP(n ,m) v r t . t h e t a .
6
7 Input : t h e t a [ : ] co− l a t i t u d e ( in rad )
8 nmax maximum s p h e r i c a l harmonic degree
9 Output : Pnm ndarray PD with Legendre f u n c t i o n s

10
11 P(n ,m) ==> Pnm(n ,m) and dP(n ,m) ==> Pnm(m, n+1)
12 ”””
13
14 costh = np . cos ( theta )
15 s i n th = np . s q r t (1− costh ∗∗2)
16
17 Pnm = np . z e ro s ( (nmax+1, nmax+2, len ( theta ) ) )
18 Pnm [ 0 ] [ 0 ] = 1
19 Pnm [ 1 ] [ 1 ] = s in th
20
21 rootn = np . s q r t (np . arange (0 , 2∗nmax∗∗2+1) )
22
23 # Recursion r e l a t i o n s a f t e r Langel ”The Main F i e l d ” (1987) ,
24 # eq . (27) and Table 2 ( p . 256)
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4.1. Computing Legendre Functions

25 for m in np . arange (0 , nmax) :
26 # Pnm tmp = np . s q r t (m+m+1)∗Pnm[m] [m]
27 Pnm tmp = rootn [m+m+1]∗Pnm[m] [m]
28 Pnm[m+1] [m] = costh ∗Pnm tmp
29 i f m > 0 :
30 Pnm[m+1] [m+1] = s in th ∗Pnm tmp/ rootn [m+m+2]
31 for n in np . arange (m+2, nmax+1) :
32 d = n∗n − m∗m
33 e = n + n − 1
34 Pnm[ n ] [m] = ( e∗ costh ∗Pnm[ n−1] [m]−\
35 rootn [ d−e ]∗Pnm[ n−2] [m] ) / rootn [ d ]
36
37 # dP(n ,m) = Pnm(m, n+1) i s the d e r i v a t i v e o f P(n ,m) v r t . t h e t a
38 Pnm [ 0 ] [ 2 ] = −Pnm [ 1 ] [ 1 ]
39 Pnm [ 1 ] [ 2 ] = Pnm [ 1 ] [ 0 ]
40 for n in np . arange (2 , nmax+1) :
41 l = n + 1
42 Pnm [ 0 ] [ l ] = −np . s q r t ( . 5 ∗ ( n∗n+n) ) ∗Pnm[ n ] [ 1 ]
43 Pnm [ 1 ] [ l ] = . 5∗ ( np . s q r t ( 2 . ∗ ( n∗n+n) ) ∗Pnm[ n ] [0 ] −\
44 np . s q r t ( ( n∗n+n−2.) ) ∗Pnm[ n ] [ 2 ] )
45
46 for m in np . arange (2 , n ) :
47 Pnm[m] [ l ] = . 5∗ ( np . s q r t ( ( n+m) ∗(n−m+1.) ) ∗Pnm[ n ] [m−1] −\
48 np . s q r t ( ( n+m+1.) ∗(n−m) ) ∗Pnm[ n ] [m+1])
49
50 Pnm[ n ] [ l ] = .5∗np . s q r t ( 2 .∗ n) ∗Pnm[ n ] [ n−1]
51
52 return Pnm

Listing 4.2: get Pm() from Appendix F. Input of the function includes the maximum spherical
harmonic degree nmax, the spherical harmonic order order and an array of co-latitudes theta.

1 import numpy as np
2 def get Pm (nmax , order , theta ) :
3 ”””
4 C a l c u l a t i o n o f a s s o c i a t e d Legendre f u n c t i o n s P(n ,m) ( Schmidt

normal ized )
5
6 Input : t h e t a [ : ] co− l a t i t u d e ( in rad )
7 order s p h e r i c a l harmonic order
8 nmax maximum s p h e r i c a l harmonic degree
9 Output : Pm ndarray wi th Legendre f u n c t i o n s

10
11 P(n ,m) ==> Pnm(n ,m) and dP(n ,m) ==> Pnm(m, n+1)
12 ”””
13 i f type (n) != int :
14 nmax=max(n)
15 i f nmax==0:
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16 nmax+=1
17 else :
18 nmax=n
19 costh = np . cos ( theta )
20 s i n th = np . s q r t (1− costh ∗∗2)
21
22 Pm = np . z e r o s ( (nmax+1, len ( theta ) ) )
23
24 rootn = np . s q r t (np . arange (0 , 2∗nmax∗∗2+1) )
25
26 # Recursion
27 for m in np . arange (0 , nmax) :
28 i f m==0:
29 Pmdiag=np . ones ( len ( theta ) )
30 e l i f m==1:
31 Pmdiag=s in th
32 Pm tmp = rootn [m+m+1]∗Pmdiag
33 i f m == order :
34 Pm[m, : ] = Pmdiag
35 Pm[m+1 , : ] = costh ∗Pm tmp−
36 for L in np . arange (m+2, nmax+1) :
37 d = L∗L − m∗m
38 e = L+L − 1
39 Pm[ L , : ] = ( e∗ costh ∗Pm[ L−1 ,:]− rootn [ d−e ]∗Pm[ L−2 , : ] ) /

rootn [ d ]
40 break
41 i f m > 0 :
42 Pmdiag = s in th ∗Pm tmp/ rootn [m+m+2]
43
44 return Pm

4.2 Computing the Kernel Matrix in Regions of Rotational Sym-
metry

By now, it has been established that properly constructing a kernel matrix is crucial to produce
reliable models. What has not been discussed is how this is implemented in practice, which will be
introduced in this section. First a brief note on why regions of rotational symmetry are attractive
followed by the implementation.

Recall that the region of interest can be any arbitrarily defined region. These kernel matrices are
however computationally costly because of the dimensions of (L + 1)2 × (L + 1)2 (Plattner and
Simons, 2017). The eigenvector matrix, GJ from Equation (3.12) can be truncated with some
arbitrary Slepian truncation parameter J , reducing the dimensions of the analysis going forward
to (L + 1)2 × J . This only applies for the eigenvector matrix, thus the kernel matrix must be
computed to its full dimension. However, when considering a region of rotational symmetry, like
a spherical cap, the kernel matrix can be re-ordered into block-diagonal form with block sizes of
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(L+1)× (L+1), significantly reducing the complexity of the problem (Plattner and Simons, 2017).

The re-ordering of the kernel matrix K in the case of a spherical cap is done by first considering the
internal-field gradient vector spherical harmonics E lm of Equation (3.4), which can be described
by a linear combination of radial and tangential spherical harmonics, P lm and B lm, defined by
Dahlen and Tromp (1998) as

P lm(r̂) = r̂Ylm(r̂) and B lm(r̂) =
∇1Ylm√
l(l + 1)

, for 1 ≤ l ≤ L and − l ≤ m ≤ l, (4.1)

where l is a spherical harmonic degree, L is the maximum spherical harmonic degree and m is
the spherical harmonic order. In the case of l = m = 0 it applies that P00(r̂) = r̂ (Plattner and
Simons, 2017). Pointwise orthogonality between P lm and B lm means that the regional integral
over products of E lm, required for constructing the kernel matrix, can be described with linear
combinations of integral products of P lm and B lm, using the same spherical harmonic degrees and
orders as the E lm (Plattner and Simons, 2017)∫
R
E lm ·E l′m′ dΩ =

√
(l + 1)(l′ + 1)

(2l + 1)(2l′ + 1)

∫
R
P lm ·P l′m′ dΩ +

√
ll′

(2l + 1)(2l′ + 1)

∫
R
B lm ·B l′m′ dΩ.

(4.2)
The integral products of P lm and B lm are derived in (Plattner and Simons, 2014) and defined as

∫
R
P lm ·P l′m′ dΩ = 2πδmm′

∫ Θ

0
XlmXl′m′ sin(θ) dθ (4.3)∫

R
B lm ·B l′m′ dΩ =

2πδmm′
∫ θ

0 [X ′lmX
′
l′m′ +m2(sin(θ))−2XlmXl′m′ ] sin(θ)dθ√

l(l + 1)l′(l′ + 1)
, (4.4)

where Θ denotes half the opening angle of the spherical cap, X ′lm denotes the Xlm differentiated
with respect to co-latitude θ and δmm′ ensures the integral is zero when m 6= m′. Recall the kernel
matrix is defined by K = A(rp)

(∫
R EL · ETL dΩ

)
A(rp)

T with EL = (E00, . . . ,Elm, . . . ,ELL)T col-
lecting all required E lm. This regional integral over products of E lm have now been theoretically
accounted for through radial and tangential spherical harmonics. The continuation operator A(rp)
acts as a normalization to the kernel matrix, since the E lm are defined on the unity sphere. Ap-
plying e.g. the Earth’s mean spherical radius means the kernel matrix is defined at that radius.

I approach the implementation of the integral over products numerically using a Gauss-Legendre
quadrature, introduced in Section 8.5 in Hildebrand (1987). I compute absicasses, weights and
number of points used in the integration using the function glquadinit() from Appendix D. The
number of points used in the integration is dependent on spherical harmonic degree and is computed
by N = (l + 1)/2 where N is the number of integration points and l is a spherical harmonic de-
gree. The absicasses computed from the Gauss-Legendre quadrature are used as input co-latitudes
when computing Legendre functions for the construction of the kernel matrix, which can be seen
in Appendix C.1.

Due to the code length I refer to Appendix C.1 for an overview of how the radial and tangential
spherical harmonics are implemented and how they are combined to construct kernel matrices.
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After computing the kernel matrix, it must be rotated to fit the center coordinates of the spherical
cap. The placement of the kernel matrix is initially constructed at the North Pole with the opening
angle of the spherical cap defining its size. Rotating the spherical cap to an arbitrary location is
performed on the eigenvector matrix GJ from Equation (3.12). Rotating to an arbitrary location
is achieved by applying a rotation matrix based on Section C.8 in Dahlen and Tromp (1998), where
appropriate rotation angles are used. The implementations for kernel matrix rotation are found in
Appendix E.

4.3 Computing the Design Matrix

Constructing the design matrix requires an eigenvector matrix. This is obtained from eigenvector
decomposition of the kernel matrix, where the computation of the kernel matrix is described in
the previous section. Implementing the design matrix requires computation of the E lm. This is
achieved by computing the Legendre functions alongside their derivatives with respect to co-latitude
individually as described in Section 4.1. Next the Xlm (Equation (3.6)) is computed allowing con-
struction of the E lm.

The design matrix is constructed in a for-loop, looping over all spherical harmonic degrees, up
to and including L. This is seen in the for loop beginning in line 50 of Appendix C.2. Since the
kernel matrix is defined at the Earth’s surface, the design matrix must be upwards continued which
is performed by applying a radial factor, computed within the aforementioned for-loop.

From the design matrix model parameters are obtained in the inverse problem.

4.4 The Inverse Problem

After the Python toolbox has been provided with both kernel and design matrix, the next step is
inversion. It is capable of performing three inversions; LS, L1-norm and L2-norm regularization,
where the two latter requires a computed regularization matrix. In the following sections, the
implementation of the two latter inversions and the regularization matrix will be described.

4.4.1 The Robust Solution

Robust estimation is an iterative process. The implementation will be as such. I use a while

loop, updating data weights with each iteration until a convergence criteria is met. Recall the
convergence criteria is a change in model parameter two-norm of less than 0.01 percent. The first
iteration will, if no prior weights are given, be the LS solution. I compute initial weights based the
data misfit of an LCS-1 prediction and satellite data over a region of interest. This implementation
is presented in Listing 4.3. The satellite gradient vector observations are provided, and the LCS-1
full model predictions are computed. Using the data uncertainties from the data set, the residuals
are computed and huber weights of Equation (3.30) are determined.

Listing 4.3: Initial weights used in the robust estimation. dsat is a vector satellite gradient
observations, rsat is a vector of satellite altitudes, phi and theta are satellite longitudes and
co-latitudes, respectively, and sigma rtp are data uncertainties for the three vector components.

1 def i n i t w e i g h t ( dsat , r sat , phi , theta , s igma rtp ) :
2 from l i b . synth . synth func t i on s import gausscoe f , s ynth g rad i en t
3 n = len ( phi [ 0 ] )
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4 c = 1 .5
5 t i t l e = ”matr/LCS1dat r%i L%i n%i c e n %i %i . npy”%\
6 ( rcap , Lsynth , n , cen [ 0 ] , cen

[ 1 ] )
7 try :
8 dLCS1 = np . load ( t i t l e )
9 except FileNotFoundError :

10 mLCS1 = gaus s coe f (185 ,0 )
11 dLCS1 = synth grad i en t ( r sat , phi , theta , 185 ,mLCS1)
12 np . save ( t i t l e , dLCS1)
13
14 r e s i = ( dsat−dLCS1) / s igma rtp
15 we ights out = np . minimum(abs ( c/ r e s i ) , 1 )
16 return weights out

The conceptual implementation of the IRLS method is introduced in Listing 4.4. Using an initial
set of J model parameters set to one, an initial convergence criteria of conver = 1, a breakpoint
constant c = 1.5 and the design matrix Gup, the computation of weights begin. The robust
solution alone is not used because this project aims at high resolution models which will require
regularization. An issue with the while loop implementation is that highly unstable models will
change a lot from iteration to iteration, meaning the convergence criteria is never met. This
issue is addressed by gradually decreasing the amount of Slepian model parameters which leads to
convergence.

Listing 4.4: IRLS conceptual implementation. Wh is obtained using the code from Listing 4.3,
Cd are data variances, conver is the convergence criteria and sigma rtp are data uncertainties.

1 import numpy as np
2
3 Wh = i n i t w e i g h t s ( dsat , r sat , phi , theta , s igma rtp )
4 Cd = sigma rtp ∗∗2
5 conver = 1
6 c = 1 .5
7 model = np . ones ( J )
8 while conver <1e−2:
9 m prev = model

10 model = np . l i n a l g . s o l v e (Gup∗(Wh/Cd)@Gup.T, Gup∗(Wh/Cd) @dsat )
11 e = ( dsat − Gup . T@model) / s igma rtp
12 Wh = np . minimum( c/abs ( e ) ,1 )
13
14 conver = np . l i n a l g . norm( m prev−model ) /np . l i n a l g . norm( model )

4.4.2 Constructing the Regularization Matrix

A key aspect in regularization is the regularization matrix. This acts as a priori knowledge to
the model parameters and serves to minimize the Lp-norm of the model parameters. The Python
toolbox implementation includes evaluating a regular grid on the planetary surface. In the case of
the Earth, its mean spherical radius is used. The regular grid used in this work is an icosahedral
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grid. I only minimize the radial component of the magnetic field (Olsen et al., 2017), and thus only
this part is provided as output in Listing 4.5.

Listing 4.5: Regularization matrix implementation in the Python toolbox. The function
requires as input the GJ matrix and a refinement degree to determine amount of points are in
the icosahedral grid.

1 def regmatr ix ( ke rne l e i gve c , d len ) :
2 L r t i t l e = ”matr/Lr−r%i−L%i−J%i−r e fd eg%i−cen−%i−%i . npy”%\
3 ( rcap , Lmax , J , r e f deg , cen [ 0 ] , cen

[ 1 ] )
4 try :
5 Lr = np . load ( L r t i t l e )
6 print ( ” Regu l a r i z a t i on matrix f i l e found . ” , end=”\n” )
7 except FileNotFoundError :
8 print ( ”No r e g u l a r i z a t i o n matrix f i l e found . Computing one . ” , end

=”\n” )
9 try :

10 regx , regy = np . load ( ”matr/ i c o s a h e d r a l r e f%i . npy”%( r e f d e g ) )
11 print ( ” Located g l o b a l i c o s a h e d r a l g r id o f re f inement degree

: %i ”\
12 %( r e f d e g ) , end=”\n” )
13 except FileNotFoundError :
14 regx , regy , n po in t s = r e g u l a r g r i d ( r e f d e g )
15 np . save ( ”matr/ i c o s a h e d r a l r e f%i . npy”%( r e f d e g ) , ( regx , regy ) )
16
17 trim = r e g u l a r g r i d c r o p p e d ( regx , regy , rcap , cen , True )
18 regX , regY = regx [ tr im ] , regy [ tr im ]
19 regZ = np . ones ( regX . shape ) ∗a
20 L = r a f t . d e s i gne va l ( k e r n e l e i g v e c [ : , : J ] , regX∗ rad , regY∗ rad , regZ , a

, 1 )
21 Lr = L [ : , : d len ]
22 np . save ( L r t i t l e , Lr )
23 print ( ”LtL r e g u l a r i z a t i o n matrix computed . ” , end=”\n” )
24 return Lr

4.4.3 L2-norm Model Regularization

The more simple version of Lp-norm model regularization is the L2-norm. In a robust scheme, the
varying parameter is the data weights only. As discussed in Section 4.4.1, I have implemented a
method of obtaining data weights based on LCS-1 predictions. Furthermore, the L2-norm regular-
ization is implemented with an option to choose these initial weights as the chosen data weights
without further iterative updating. Equation (3.34) is solved only varying the regularization pa-
rameter α2 with each iteration. Listing 4.6 presents the implementation for the L2-norm model
regularization where also model and residual norms of Equations (3.36) and (3.37) are computed
for the L-curve. Furthermore it includes the option to produce prediction maps for the range of α2

values. Residual norms, model norms and weights are saved with an appropriate title in the matr

sub-folder of the toolbox.
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Listing 4.6: L2-norm model regularization scheme. dsat are satellite observations, dataerror
are data uncertainties both obtained from the data set. designsat is the design matrix, designz
is a design matrix at Earth’s mean spherical surface to produce prediction maps. RtR is the
product of the regularization matrix transposed with itself. Cd are data variances, Wh are data
weights computed from Listing 4.3 and G is the eigenvector matrix.

1 def L2Lcurve ( dsat , dataerror , des ignsat , des ignz , RtR ,Wh, Cd,G) :
2 try :
3 re s i norm = np . load ( r e s n o r m t i t l e )
4 model norm = np . load ( modnormtitle )
5 except FileNotFoundError :
6 re s i norm = np . z e r o s (n)
7 model norm = np . z e ro s (n)
8
9 for i in range (n) : # Loop over number o f a lpha squared

10 i f r egrobus t : # Compute data w e i g h t s
11 m alpha = np . ones ( len ( d e s i g n s a t ) )
12 conver , j = 1 ,0
13 while conver > 1e−2:
14 j+=1
15 m prev = m alpha . copy ( )
16 m alpha = np . l i n a l g . s o l v e ( ( d e s i g n s a t ∗(Wh/Cd) ) \
17 @designsat .T+a l p h a s q a l l [ i ]∗RtR,\
18 ( d e s i g n s a t ∗(Wh/Cd) ) @dsat )
19 e = ( dsat−d e s i gn s a t . T@m alpha ) / datae r ro r
20 Wh = np . minimum( c/abs ( e ) ,1 )
21 conver = np . l i n a l g . norm( m prev−m alpha ) /\
22 np . l i n a l g . norm( m alpha )
23
24 else : # Fixed data w e i g h t s
25 m alpha = np . l i n a l g . s o l v e ( ( d e s i g n s a t ∗(Wh/Cd) ) \
26 @designsat .T+a l p h a s q a l l [ i ]∗RtR,\
27 ( d e s i g n s a t ∗(Wh/Cd) ) @dsat )
28 dmod = d e s i gn s a t . T@m alpha
29 model norm [ i ] = m alpha . T@RtR@m alpha
30 res i norm [ i ] = ( ( dsat−dmod) ∗(Wh/Cd) )@( dsat−dmod)
31 i f mapmalp :
32 np . save ( malpL2sav , m alpha )
33 dmodz = des ignz . T@m alpha
34 malphamapsL2 (dmodz , m alpha , a l p h a s q a l l [ i ] ,G, i )
35 np . save ( r e sno rmt i t l e , r e s i norm )
36 np . save ( modnormtitle , model norm )
37 np . save ( a l p h a s q t i t l e , a l p h a s q a l l )
38
39 return res i norm , model norm

This method ensures that model parameters, model prediction maps and Mauersberger-Lowes
power spectra are saved in each iteration if wanted, which provides useful diagnostic tools alongside
the L-curve for choosing the regularization parameter α2.
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4.4. The Inverse Problem

4.4.4 L1-norm Model Regularization

The more complex type of Lp-norm model regularization is the L1-norm regularization. This
implementation is built around the robust scheme as for the L2-norm model regularization. With
the introduction of model weights, the varying parameters are now data and model weights. They
must meet the convergence criteria of a change in model parameter two-norm of less than 0.01
percent. This implementation also features the ability to choose data weights based on an LCS-1
prediction, which can be chosen as the final weights or updated iteratively. The implementation
resembles that of the L2-norm much with the exception of the newly incorporated data weights,
and Listing 4.7 presents the code.

Listing 4.7: L1-norm model regularization scheme. dsat are satellite observations, dataerror
are data uncertainties both obtained from the data set. designsat is the design matrix, designz
is a design matrix at Earth’s mean spherical surface to produce prediction maps. R is the
regularization matrix. Cd are data variances, Wh are data weights computed from Listing 4.3
and G is the eigenvector matrix.

1 def L1Lcurve ( dsat , dataerror , des ignsat , des ignz ,R,Wh, Cd,G) :
2 try :
3 re s i norm = np . load ( r e s n o r m t i t l e )
4 model norm = np . load ( modnormtitle )
5 except FileNotFoundError :
6 re s i norm = np . z e r o s (n)
7 model norm = np . z e ro s (n)
8
9 for i in range (n) :

10 i f r egrobus t : # compute data w e i g h t s and model w e i g h t s
11 m alpha = np . ones ( len ( d e s i g n s a t ) )
12 Wm = np . ones ( len (R.T) )
13 conver , j = 1 ,0
14 while conver > 1e−2:
15 j+=1
16 m prev = m alpha . copy ( )
17 m alpha = np . l i n a l g . s o l v e ( ( d e s i g n s a t ∗(Wh/Cd) ) \
18 @designsat .T+a l p h a s q a l l [ i ] ∗ ( (R∗Wm)@R.

T) ,\
19 ( d e s i g n s a t ∗(Wh/Cd) ) @dsat )
20 e = ( dsat−d e s i gn s a t . T@m alpha ) / datae r ro r
21 Wh = np . minimum( c/abs ( e ) ,1 )
22 Wm = 1/np . s q r t ( (R. T@m alpha )∗∗2+ e p s i l o n ∗∗2)
23 conver = np . l i n a l g . norm( m prev−m alpha ) /\
24 np . l i n a l g . norm( m alpha )
25 else : # Fixed data weights , compute model w e i g h t s
26 m alpha = np . ones ( len ( d e s i g n s a t ) )
27 Wm = np . ones ( len (R.T) )
28 conver , j = 1 ,0
29 while conver > 1e−2:
30 j+=1
31 m prev = m alpha . copy ( )
32 m alpha = np . l i n a l g . s o l v e ( ( d e s i g n s a t ∗(Wh/Cd) ) \

33



4.5. Data Sorting

33 @designsat .T+a l p h a s q a l l [ i ] ∗ ( (R∗Wm)@R.
T) ,\

34 ( d e s i g n s a t ∗(Wh/Cd) ) @dsat )
35 Wm = 1/np . s q r t ( (R. T@m alpha )∗∗2+ e p s i l o n ∗∗2)
36 conver = np . l i n a l g . norm( m prev−m alpha ) /\
37 np . l i n a l g . norm( m alpha )
38 dmod = d e s i gn s a t . T@m alpha
39 model norm [ i ] = m alpha .T@( ( Lr∗Wm)@R.T) @m alpha
40 res i norm [ i ] = ( ( dsat−dmod) ∗(Wh/Cd) )@( dsat−dmod)
41 i f mapmalp :
42 np . save ( malpL1sav , m alpha )
43 dmodz = des ignz . T@m alpha
44 malphamapsL1 (dmodz , m alpha , a l p h a s q a l l [ i ] ,G, i )
45 np . save ( r e sno rmt i t l e , r e s i norm )
46 np . save ( modnormtitle , model norm )
47 np . save ( a l p h a s q t i t l e , a l p h a s q a l l )
48
49 return res i norm , model norm

As the L2-norm, the L1-norm model regularization provides the same possibilities of producing
diagnostic tools such as Mauersberger-Lowes power spectra and model prediction maps.

4.5 Data Sorting

Sorting the data regionally must be carried out with a spherical setting in mind. To correctly sort
data only within a desired region, I compute the cosine of the solid angles with respect to the center
coordinates of the spherical cap using

cos(µik) = cos(θi) cos(θk) + sin(θi) sin(θk) cos(φi − φk), (4.5)

with subscript k denoting the spherical cap and i denoting data. θ is co-latitude and φ is longitude
(Kother et al., 2015). The solid angles are compared the the opening angle of the spherical cap,
and only data with solid angles smaller than or equal to the opening angle are selected. This is
implemented using two lines of code shown in Listing 4.8, where I obtain the actual solid angles by
taking the arccos of the right-hand side of Equation (4.5).

Listing 4.8: Solid angle computation for data trimming. theta and phi are data co-latitudes
and longitudes and cen is a tuple of spherical cap center coordinates. First coordinate is the
longitude, and the second is the co-latitude. radius is the opening angle of the spherical cap.

1 sang l e = arcco s ( cos ( theta )∗ cos ( cen [1 ] )+\
2 s i n ( theta )∗ s i n ( cen [ 1 ] ) ∗ cos ( phi−cen [ 0 ] ) )
3 trim = np . l e s s e q u a l ( sangle , r ad iu s )

This concludes the implementation of key aspects of the Python toolbox. The following chapter
will introduce two synthetic test cases constructed as a proof of concept for the Python toolbox.
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Chapter 5

Synthetic Test Cases

Prior to this work, the Slepian approach to regional modelling has only been used with either non-
gradient satellite data or synthetic data. Furthermore, previous models generated are no higher
than spherical harmonic degree L = 130 (e.g. Plattner and Simons (2015), Plattner and Simons
(2017)). Before deriving models using real gradient satellite data, I tested an early iteration of the
Python toolbox with synthetic cases as presented in this chapter.

The main goals of the test cases are:

• Proof of concept test.

– Test whether the Python toolbox works with synthetic gradient data.

• High spherical harmonic degree test.

– Python toolbox validation for scientific purposes.

• L1-norm and L2-norm model regularized solutions.

– Show that regularization works with the Slepian approach.

I constructed two test cases based on the above goals. Common to both cases is that synthetic
gradient data is acquired using the LCS-1 model parameters (Olsen et al., 2017). This lithospheric
magnetic field model goes up to spherical harmonic degree L = 185. Knowing the model parameters,
the synthetic gradient data is given by the forward problem

dsynthgrad = dsynth1 − dsynth2 = (G1 −G2) mLCS−1, (5.1)

where dsynthgrad is the synthetic gradient data, dsynthi are synthetic data vectors that will construct
either across-track or along-track gradient data, Gi are design matrices and mLCS−1 are model pa-
rameters from the LCS-1 model. For both synthetic test cases I use the full LCS-1 model. I obtain
the design matrices Gi using the design SHA() function from GMT tools toolbox (see Appendix F).

The test cases are located at the site of the Bangui Anomaly and will consist of a spherical cap
with opening angle of 15◦. I extract location, altitude and data uncertainty information from the
real data set to best imitate a real case scenario (see Sections 2.2.1 and 4.5 for an introduction to
data selection and sorting). I include information with a 15◦ radius from the center coordinates
(lon, lat) = (20◦ E, 4◦ N). The locations alongside altitudes are used as input to design SHA() to
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5.1. Test Case One

obtain Gi of Equation (5.1). Now knowing the model parameters and Gi I compute the synthetic
data.

I add noise to the synthetic data of the second test case based on known data uncertainties available
in the data set. The implementation uses the numpy.random.normal() function with zero mean
and known standard deviations for each datum.

5.1 Test Case One

This first test is constructed as a proof of concept for the Python toolbox, i.e. to investigate whether
or not the Python toolbox works as intended. The test is of spherical harmonic degree 185 and
utilizes noise-free synthetic data.

I construct synthetic data at satellite altitude using actual satellite positions

dsynth,satgrad = dsynth,sat1 − dsynth,sat2 =
(
Gsat

1 −Gsat
2

)
mL=185,LCS−1, (5.2)

where the sat superscript means actual satellite positions and altitudes. This data will be used in
the inversion to obtain Least Squares Slepian model parameters. I construct a synthetic truth at
the Earth’s surface using

dsynth,truth = GtruthmL=185,LCS−1, (5.3)

where dsynth,truth is the LCS-1 model evaluated on a 0.1◦ spacing coordinate grid at the Earth’s
mean spherical surface, a = 6371.2 km. Equations (5.2) and (5.3) provide the data presented in
Figures 5.1a and 5.1b, respectively. In summary, Figure 5.1a contains the synthetic satellite data
which must be used to model the synthetic truth shown in Figure 5.1b.

(a) Radial component of dsynth,satgrad

projected onto one set of coordi-
nates. The black circle indicates 15◦

radius, the cut-off radius for select-
ing data.

(b) Radial component of the syn-
thetic truth at Earth’s surface. The
black circle indicates 15◦ radius, the
cut-off radius for selecting data.

Figure 5.1: Radial components of the synthetic data with L = 185.
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5.1. Test Case One

5.1.1 Regional Model of Test Case One

I construct a localized kernel matrix of the spherical cap with an opening angle of 15◦ over the
Bangui anomaly using L = 185 and Jmax = 2000. I ensure to construct a kernel matrix with more
Slepian functions than I anticipate will be necessary, as redundant functions can be negated by
truncating to include only J < Jmax functions.

Investigating eigenvalues of the kernel matrix as a function of number of Slepian functions, I approx-
imate the best Slepian truncation parameter, J . Figure 5.2 presents this plot, where eigenvalues
have diminished greatly within the Jmax included Slepian functions. It is thus within reason to
further truncate to include only J = 1850 Slepian functions. I use this plot as a diagnostic tool for
estimation of when eigenvalues become too small, and thus selection of the truncation parameter
J is obtained from this plot.

Figure 5.2: Localized kernel matrix eigenvalues as a function of amount of Slepian functions
with the estimation of a good Slepian truncation at J = 1850 indicated by the green vertical
line.

I construct and obtain localized design matrices evaluated at actual satellite altitudes and solve the
inverse problem stated in Equation (3.28) to obtain the Least Squares Slepian model parameters.
The resulting map is presented in Figures 5.3a and 5.3b.

The resulting model is in high agreement with the synthetic truth varying only near the edges of
the spherical cap by a maximum of ±6 nT. A good result is expected due to noiseless data, however
I did not expect a simple LS solution to perform this well at high spherical harmonic degrees. This
could indicate issues with this early iteration of the Python toolbox. I urge caution using this
synthetic test case for validation of the Python toolbox.

37



5.2. Test Case Two

(a) Radial component of the mod-
elled Least Squares data.

(b) Radial component of the dif-
ference between dmodLS and synthetic
truth at Earth’s surface.

Figure 5.3: Least Squares solution to the L = 185 synthetic case without added noise.

5.2 Test Case Two

The second test case is a high spherical harmonic degree performance case that will use Lmax = 200.
I now distinguish between Lmax that will describe the spherical harmonic degree of the model and
Lsynth that describes the spherical harmonic degree of the synthetic data.

Synthetic gradient data and a synthetic truth are the same as Figures 5.1 and 5.1b, but noise has
been added to the synthetic satellite data. In Figures 5.4a and 5.4b the noise distribution added
to the data is shown.

(a) Histogram of noise from a
zero-mean normal distribution with
known standard deviations.

(b) Scatter plot of the synthetic
noise. The black circle indicates the
15◦ radius of the spherical cap.

Figure 5.4: Synthetic noise histogram and scatter plot.
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5.2. Test Case Two

5.2.1 Regional Model of Test Case Two

I construct a regional model for the L = 200 case using Jmax = 3, 000. I investigate the localized
kernel matrix eigenvalues as a function of amount of Slepian functions and choose J = 1, 500.
Figure 5.5 presents eigenvalues as a function of Slepian functions.

Figure 5.5: Localized kernel matrix eigenvalues plotted against amount of Slepian Functions
for the L = 200 case.

I investigate only the L2-norm model regularization for this test because this is the more simple
type of regularization.

Because this test is performed with an early iteration of the Python toolbox, the icosahedral grid
was not yet implemented. Therefore in constructing the regularization matrix I do not use an
equal area grid. Because the test site is close to the Equator, the missing equal area effects of the
icosahedral grid will not impact the results greatly. The grid is defined as a spherical cap with a
radius of r = rcap + 10◦, where rcap is the opening angle of the spherical cap to be investigated,
such that the entirety of the area is more than covered.

Investigating the L2-norm model regularization I iterate over varying values of the regularization
parameter α2. For each iteration I solve the inverse problem stated in Equation (3.34), and compute
model and residual norms according to Equations (3.36) and (3.37). I plot the L-curve resulting
from the model and residual norms and use the discrepancy principle to estimate the best value
for α2. By applying the discrepancy principle, I normalize the data misfit with respect to the
number of data (see e.g. Equation (3.38)). I choose the value of α2 that produces a data misfit of
1. Investigating Figure 5.6 it becomes clear that the regularization parameter that produces the
best data misfit with respect to the discrepancy principle is α2 = 7 · 10−5.
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5.2. Test Case Two

Figure 5.6: L-curve for the Lmax = 200 case. X-axis is computed according to Equation
(3.37) and y-axis according to Equation (3.36) and both have been normalized with respect to
the discrepancy principle (see Equation (3.38)).

I re-compute the problem stated in Equation (3.34), this time applying the chosen value of α2 and I
obtain the model prediction and associated difference from the synthetic truth, presented in Figure
5.7.

(a) Radial component of the L2-
norm regularized prediction.

(b) Difference between radial com-
ponents of the synthetic truth (Fig-
ure 5.1b) and the L2-norm regular-
ized prediction.

Figure 5.7: L2-norm regularized solution for the Lmax = 200 case. Black circles indicate the
radius of the spherical cap (15◦).
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5.3. Synthetic Test Case Summary

The L2-norm regularized solution produced for the L200 = 200 case is indeed as one would expect.
The biggest difference is observed over the Bangui anomaly, while the entirety of the field has been
dampened. This test successfully achieves a reasonable L2-norm regularized model over the Bangui
anomaly at high spherical harmonic degrees with noised synthetic data.

5.3 Synthetic Test Case Summary

Two synthetic tests were carried out to investigate the performance of the Slepian toolbox.

Test case one investigated whether or not the toolbox works as expected using gradient satellite
data. It was found to successfully reproduce the synthetic truth of LCS-1, up to spherical har-
monic degree L = 185. However due to this test case being carried out with an early iteration
of the Python toolbox, I urge caution with the conclusion that a LS solution of high spherical
harmonic degree using noise-free data produces reliable results.

Test case two investigates a high spherical harmonic degree case of Lmax = 200 using noised syn-
thetic data. I performed L2-norm model regularization and by investigating an L-curve I determined
the α2 that best suits the discrepancy principle to be α2 = 7 · 10−5. This regularization produces
decent results, with the overall amplitude of the model prediction dampened as one would expect.

Despite the test cases being carried out early in the process, I will leave it to the real results for
concluding whether or not the Python toolbox has been successfully implemented. But test case
two does suggest the toolbox works as intended with regularized solutions.
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Chapter 6

Results

In this chapter the results obtained using the Python toolbox will be presented. Plots of model
prediction maps for the regions of interest (described in Section 2.3), L-curves, power spectra and
data misfit histograms are presented individually for each region followed by a table of model and
data misfit statistics.

Data misfit, e, is defined as the difference between satellite observations, d, and model predictions
at satellite altitude, dpred,

e = d− dpred, (6.1)

and will be presented in histograms that shows the density of each residual bin. This density is
obtained using the hist() function from the Matplotlib library1 and the normalization is done
such that the integral of the probability density function over the range is one.

The root-mean-square error, RMSE, will be computed for data misfit using

RMSE =

√∑N
i=1

(
e2
i

)
N

, (6.2)

where N is the length of the the data misfit vector. The RMSE diagnostic is useful for determining
whether or not the data has been sufficiently fitted. An RMSE close to zero means the data has been
fitted well. Furthermore, model statistics will include the model norms derived from regularization

‖mJ,α,L2‖ = mT
J,α,L2

RTRmJ,α,L2 (6.3)

‖mJ,α,L1‖ = mT
J,α,L1

RTWmRmJ,α,L1 , (6.4)

which provides a diagnostic tool for determining whether or not models are sensible. Table 6.1
presents the settings used for all models produced in the thesis. These values can be inserted into
the initialization script of the Python toolbox to produce similar models.

1https://matplotlib.org/api/_as_gen/matplotlib.pyplot.hist.html
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6.1. Bangui Anomaly

Table 6.1: Analysis information used for the four regional models produced. The spherical
cap category includes center coordinates for the spherical cap alongside the opening angle of
the cap. The analysis category includes spherical harmonic degree (L) of the analysis and
amount of Slepian functions included (J). The inversion category includes values used for the
regularization parameter α2 for both L1-norm and L2-norm regularization.

Bangui Australia Walvis Ridge Greenland

Spherical cap

Longitude 18◦ E 133◦ E 0◦ 42◦ W

Latitude 4◦ N 28◦ S 30◦ S 72◦ N

Opening angle 15◦ 25◦ 20◦ 15◦

Kernel

L 200 200 200 200

J 1500 2500 1700 1250

Inversion

L1-norm α2 3.70× 10−4 nT−1 7.3× 10−4 nT−1 1× 10−3 nT−1 2.8× 10−4 nT−1

L2-norm α2 8.0× 10−6 nT−2 2.8× 10−5 nT−2 2.8× 10−5 nT−2 1× 10−5 nT−2

6.1 Bangui Anomaly

The Bangui Anomaly is one of the largest known lithospheric anomaly on Earth. This region pro-
vides an excellent opportunity to benchmark test the Python toolbox over a strong anomaly at low
latitudes.

The L-curves related to the choice of regularization parameter α2 is presented in Figures 6.1 and
6.2. These have both been normalized with respect to the discrepancy principle. Clearly, the
discrepancy principle can not be utilized for this area, seeing as the misfit norms are all larger than
1 nT. This may either have to do with the difficulty of assigning uncertainties to data, making them
unreliable, or with the fact that the gradients over the anomaly are difficult to model, causing an
increase in the misfit norm. The L1-norm regularized model has a regularization parameter close
to the knee of the L-curve, which suggests a good trade-off between minimizing model norm and
misfit norm. This parameter is not chosen solely because it was near the knee, but also from
visual inspection of prediction maps. The L2-norm regularized model has a lower regularization
parameter compared to the L1-norm, thus minimizing the model norm less than the misfit norm.
This value was chosen based on visual inspection of prediction maps since the knee of the L-curve
did not produce sensible results.
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6.1. Bangui Anomaly

Figure 6.1: L1-norm regularized model and residual norms for the Bangui Anomaly as com-
puted by Equations (3.43) and (3.44), respectively, with residual norm normalized with respect
to the discrepancy principle.

Figure 6.2: L2-norm regularized model and residual norms for the Bangui Anomaly as com-
puted by Equations (3.36) and (3.37), respectively, with residual norms normalized with respect
to the discrepancy principle.
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6.1. Bangui Anomaly

Figures 6.3 and 6.4 present the L1-norm and L2-norm regularized regional model prediction maps
of the Bangui Anomaly, respectively. Both predictions captures the strong anomaly around coordi-
nate (lon, lat) = (18◦ E, 5◦ N) as well as smaller scale features in the surrounding area. Note that
the colorscale shows larger span compared to the satellite data from Figure 2.1, since the satellite
measurements are at satellite altitude, and the model predictions are at the Earth’s surface. The
prediction maps will be subject to discussion when compared to the LCS-1 model in Section 7.1.1.

The data misfit for the L1-norm and L2-norm regularized predictions are presented in Figures 6.5
and 6.6, and have the same mean values ēL1 = −0.009 nT and ēL2 = −0.009 nT. This serves as
an indication that the data has been satisfactorily fitted in this region. The residual distributions
of both model predictions are very similar and they appear to be Laplace-distributed. There are
some outliers present, and it is believed that these are located over the anomaly itself, due to the
difficulty of modelling rapid large changes. This hypothesis was investigated using a scatter plot of
the radial component data misfits shown in Figure 6.7. From this it is evident that the residuals
have a tendency of bundling up in the area of the anomaly.

Figure 6.3: L1-norm regional model prediction of the radial field at the Earth’s mean spherical
radius a = 6371.2 km for the Bangui Anomaly.
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6.1. Bangui Anomaly

Figure 6.4: L2-norm regional model prediction of the radial field at the Earth’s mean spherical
radius a = 6371.2 km for the Bangui Anomaly.

Figure 6.5: Histogram showing the data misfit distribution of the L1-norm regularized pre-
diction over the Bangui Anomaly.
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6.1. Bangui Anomaly

Figure 6.6: Histogram showing the data misfit distribution of the L2-norm regularized pre-
diction over the Bangui Anomaly.

Figure 6.7: Scatter plot of the L1-norm prediction radial component data misfit for the Bangui
Anomaly.
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Localized internal source spherical harmonic Gauss coefficients are computed using Equation (3.25)
for both the L1-norm and L2-norm regularized Slepian model parameters. With the correction in-
troduced in Equation (3.49) these Gauss coefficients are approximated globally instead of regionally
allowing for the Mauersberger-Lowes power spectra to be computed for the two sets of model pa-
rameters using Equation (3.46). In Figure 6.8 the Mauersberger-Lowes power spectra is shown.
These are used as a diagnostic tool for the order of magnitude of the power of the model param-
eters. The order of magnitude of the spectra is 101 nT2, with the exception of high spherical
harmonic degrees for the L2-norm. This suggests that the models are reasonable. The two spectra
shows the same tendencies and the spike seen at high spherical harmonic degree is likely due to
numerical instability.

Figure 6.8: Mauersberger-Lowes power spectrum over the Bangui Anomaly.

6.2 Australia

Where the Bangui Anomaly allowed the Python toolbox to be tested at low latitudes, Australia
provides an opportunity to test this regional modelling approach with its many, complex anomalies
throughout the country at mid latitudes. Australia has been subject to extensive aeromagnetic
surveys making it an interesting region for regional modelling.

The L-curves produced for both regularization methods are presented in Figures 6.9 and 6.10 and
are both normalized with respect to the discrepancy principle. Both the L1-norm and L2-norm
regularized models have regularization parameters reasonably close to the knee of the L-curves.
Like for the Bangui Anomaly, the L2-norm has a smaller regularization parameter than the L1-
norm. The discrepancy principle is not valid for this region either, seeing as the residual norms are
almost twice as large as they should be. Again, this is no surprise given the difficulty of assigning
data uncertainties.
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6.2. Australia

Figure 6.9: L1-norm regularized model and residual norms for Australia as computed by
Equations (3.43) and (3.44), respectively, with residual norm normalized with respect to the
discrepancy principle.

Figure 6.10: L2-norm regularized model and residual norms for Australia as computed by
Equations (3.36) and (3.37), respectively, with residual norms normalized with respect to the
discrepancy principle.
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The lithospheric magnetic field maps produced from L1-norm and L2-norm regularization using
the regularization parameters from Table 6.1 are presented in Figures 6.11 and 6.12. The L1-norm
prediction introduces some edge effects along the West North-West edges, but the anomalies related
to Australia seem to be reasonably captured by the model. The South-Central anomaly around
(lon, lat) = (138◦ E, 35◦ S) of Australia alongside smaller-scale features across the country are
looking promising. The L2-norm prediction does not have the same edge effects as the L1-norm
prediction does. The structures are, as expected, not as prominent in the L2-norm prediction, but
features such as the South-Central anomaly and many smaller scale features do seem promising
with the L2-norm prediction as well. Comparison to the EMM2015 model truncated to spherical
harmonic degree 185 is done in Section 7.1.2.

Figure 6.11: L1-norm regional model prediction of the radial field at the Earth’s mean spher-
ical radius for Australia.
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Figure 6.12: L2-norm regional model prediction of the radial field at the Earth’s mean spher-
ical radius for Australia.

Residual histograms of the data misfit are produced, and presented in Figures 6.13 and 6.14. Both
histograms are centred near zero both with a mean of 0.035 nT. Large outliers are seen in both
histograms, both with a maximum of 7467.2 nT and a mimumum of −6086.3 nT. This could indicate
that the edge effect seen in the L1-norm prediction map are not the cause of these outliers, as they
might not otherwise be present in the data misfit histogram for the L2-norm prediction. I have
determined the outliers to be due to the co-latitudinal and longitudinal components, with the main
contributor being the longitudinal component. The curiosity of the large outliers is investigated in
Figures 6.15a and 6.15b where residuals are presented in scatter plots. Both scatter plots clearly
indicate that the largest outliers are located in the southern area of the spherical cap. Furthermore,
along-track features are evident.
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Figure 6.13: Histogram showing the data misfit distribution of the L1-norm regularized pre-
diction over Australia.

Figure 6.14: Histogram showing the data misfit distribution of the L2-norm regularized pre-
diction over Australia.
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6.2. Australia

(a) L1-norm. (b) L2-norm.

Figure 6.15: Scatter plots of the L1-norm and L2-norm prediction longitudinal component
data misfit for Australia.

A Mauersberger-Lowes power spectrum is computed for these models, presented in Figure 6.16.
The two spectra shows the same tendencies, suggesting good agreement with varying amplitude.
Similar to the Bangui Anomaly, a large spike at high spherical harmonic degree exist.

Figure 6.16: Mauersberger-Lowes power spectrum over Australia.

53



6.3. Walvis Ridge

6.3 Walvis Ridge

The Walvis Ridge region provides a mostly oceanic region which cater the interesting opportunity
of investigating how well this regional modelling approach detects the South Atlantic isochrones,
as well as other potentially interesting features.

The L-curves produced for both types of regularization are presented in Figures 6.17 and 6.18,
and are normalized with respect to the discrepancy principle. Residual norms for both types of
regularization crosses 1 nT, and the regularization parameters that produces the residual norm
closest to one, should be a sensible choice. These regularization parameters, however, produce
highly regularized prediction maps, therefore smaller values for the regularization parameters are
chosen. This serves as an example that the Walvis Ridge data uncertainties are not fully to be
trusted when selecting regularization parameters using the discrepancy principle. The final chosen
α2 values do not lie far from the knee of the L-curve and are marked in the Figures. These are also
considered a sensible trade-off between minimization of model norm and residual norm.

Figure 6.17: L1-norm regularized model and residual norms for the Walvis Ridge as computed
by Equations (3.43) and (3.44), respectively, with residual norm normalized with respect to the
discrepancy principle.
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6.3. Walvis Ridge

Figure 6.18: L2-norm regularized model and residual norms for the Walvis Ridge as computed
by Equations (3.36) and (3.37), respectively, with residual norms normalized with respect to
the discrepancy principle.

The L1-norm and L2-norm regularized prediction maps are presented in Figures 6.19 and 6.20.
Both models seem to capture the more prominent features off the Western coast of Africa. The
South Atlantic isochrones do seem to be captured by the regional models as well, as there are
several North-South trends in the Western longitudes. Comparison with the LCS-1 model is done
in Section 7.1.3, where this will be further investigated.

Data misfit histograms are presented in Figures 6.21 and 6.22. These are closely centred around
zero with the exception of a few large outliers, suggesting that the majority of data has been fitted
sufficiently.
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6.3. Walvis Ridge

Figure 6.19: L1-norm regional model prediction of the radial field at the Earth’s mean spher-
ical radius for the Walvis Ridge.

Figure 6.20: L2-norm regional model prediction of the radial field at the Earth’s mean spher-
ical radius for the Walvis Ridge.
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6.3. Walvis Ridge

Figure 6.21: Histogram showing the data misfit distribution of the L1-norm regularized pre-
diction over the Walvis Ridge.

Figure 6.22: Histogram showing the data misfit distribution of the L2-norm regularized pre-
diction over the Walvis Ridge.
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6.4. Greenland

Finally a Mauersberger-Lowes power spectrum for each regularization method is computed and
presented in Figure 6.23. Again agreement between the two models is evident, and indeed the
order of magnitude of the power is within a reasonable range. Also in this case a large spike
appears at high spherical harmonic degree.

Figure 6.23: Mauersberger-Lowes power spectrum over the Walvis Ridge.

6.4 Greenland

The most challenging test of the regional modelling tool are at high latitude regions. Greenland is
the case of such a region. At this high latitude, the noise contributions from the co-latitudinal and
longitudinal components are too large and complex, therefore the regional models are constructed
using only radial data. The L-curves produced for both regularization methods are presented in
Figures 6.24 and 6.25. Both has been normalized with respect to the discrepancy principle. The
L1-norm model has a regularization parameter close to the knee of the L-curve, while the L2-norm
model is much less regularized resulting in a larger model norm. For this high latitude region, the
discrepancy principle is not applicable, because the residual norms are all larger than one.
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6.4. Greenland

Figure 6.24: L1-norm regularized model and residual norms for Greenland as computed by
Equations (3.43) and (3.44), respectively, with residual norms normalized with respect to the
discrepancy principle.

Figure 6.25: L2-norm regularized model and residual norms for Greenland as computed by
Equations (3.36) and (3.37), respectively, with residual norms normalized with respect to the
discrepancy principle.
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6.4. Greenland

The prediction maps for both regularization methods are presented in Figures 6.26 and 6.27. Many
structures around the entire country are captured with these regional models. There is one pecu-
liar structure, in South-West Greenland around (lon, lat) = (63◦ N, 50◦ W ), stretching into the
ocean westwards, appear in both the L1-norm and L2-norm regularized model predictions. This
feature will definitely be subject to discussion when compared to the EMM2015 model truncated
to spherical harmonic degree L = 185 in Section 7.1.4. The L1-norm and L2-norm predictions pro-
duces similar results, with the L1-norm seemingly producing more well-defined structures for the
anomalies. The detailed structures over Greenland suggests that this regional approach produces
reasonable results, but comparison to known models must be conducted before any conclusions can
be made.

Figure 6.26: L1-norm regional model prediction of the radial field at the Earth’s mean spher-
ical radius for Greenland.
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6.4. Greenland

Figure 6.27: L2-norm regional model prediction of the radial field at the Earth’s mean spher-
ical radius for Greenland.

The data misfit only include the radial contributions, and are presented for both regularization
methods in Figures 6.28 and 6.29. Data misfit means for the L1-norm and L2-norm regularized
models are very similar at −0.0084 nT and −0.0085 nT, respectively, with few outliers present.

Figure 6.28: Histogram showing the data misfit distribution of the L1-norm regularized pre-
diction over Greenland.
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6.4. Greenland

Figure 6.29: Histogram showing the data misfit distribution of the L2-norm regularized pre-
diction over Greenland.

A Mauersberger-Lowes power spectrum is computed for each regularization method and presented
in Figure 6.30. There is an overall good agreement, and the power spectrum is at a reasonable
order of magnitude, suggesting that the model parameters are reasonable. Again a large peak is
visible at high spherical harmonic degrees.

Figure 6.30: Mauersberger-Lowes power spectrum over Greenland.
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6.5. Model Statistics

6.5 Model Statistics

Table 6.2 presents the relevant model norm and RMSE statistics for the final models presented
in Sections 6.1 through 6.4. The RMSE values of the targeted regions vary. It seems reasonable
and expected when investigating the data misfit histograms for each region. E.g. Bangui has no
large outliers and its larger misfit values are close to symmetric around zero. Australia introduces
some very large outliers that are not symmetric around zero, which could suggest an RMSE larger
than zero which is also observed. I believe, despite the very large outliers present, the data has
been overall sufficiently fitted with these regional models, based on RMSE values and data mistfit
histograms. Model norms for both regularization types, for all regions, are within a reasonable
range, and there is thus no reason to suspect that the model parameters are unrealistic.

Table 6.2: Model and misfit statistics of the regional models produced in this thesis. The model
norms ‖mJ,α‖ are computed using Equations (6.4) and (6.3), and the RMSE are computed using
Equation (6.2) for each of the two regularized solutions per region.

Bangui Australia Walvis Ridge Greenland

L1-norm L2-norm L1-norm L2-norm L1-norm L2-norm L1-norm L2-norm

‖mJ,α‖ 21.87 nT 2631.94 nT2 24.11 nT 1386.64 nT2 16.26 nT 569.31 nT2 20.46 nT 964.78 nT2

RMSE 0.660 nT 0.660 nT 21.48 nT 21.48 nT 5.089 nT 5.089 nT 3.61 nT 3.61 nT

63



Chapter 7

Discussion
In this chapter I will discuss the results of the regional models produced using the Python toolbox.
Because other lithospheric magnetic field models exist, such as LCS-1 and EMM2015, I will inves-
tigate how the newly produced regional models differ from existing global models. I will discuss
the Slepian truncation parameter J with respect to the regional model constructed over the Bangui
Anomaly. I will reflect on the uses of the Python toolbox as a priori modelling to aeromagnetic
data. Furthermore, a discussion of the impact on the regional models as the Swarm satellites
descends. Lastly I will reflect on advantages and limitations of regional modelling with a Slepian
approach.

7.1 Model Comparison

In this section I will discuss the Slepian approach to regional modelling with respect to the global
models LCS-1 and EMM2015 truncated to spherical harmonic degree L = 185. I obtain the LCS-
1 prediction by solving the forward problem dmod = GmLCS−1, where G is the design matrix
constructed with the same grid used for the regional model and mLCS−1 are the LCS-1 model
parameters. The same procedure is used for obtaining EMM2015 data, where mLCS−1 is replaced
with mEMM2015.

7.1.1 The Bangui Anomaly

The L1-norm regularized model prediction of the Bangui Anomaly presented in Section 6.1 is com-
pared to the LCS-1 model visually in Figure 7.1. The L2-norm prediction comparison is found in
Appendix B.1.

The regional prediction, Figure 7.1a, nicely reproduces the expected anomalies found in the LCS-1
prediction, Figure 7.1b. The anomaly itself seem to show more detailed structure, particularly in the
Northern and Central region in the regional model. The smaller features surrounding the anomaly
are largely captured equally for the regional and LCS-1 predictions. The regional prediction may
even show a little less coherent structures, and is more affected by the L1-norm regularization. The
regional prediction has maximum and minimum of 895.5 nT and −1018.6 nT, respectively, against
the LCS-1 prediction with 821.9 nT and −970.3 nT as maximum and minimum. This indicates
that the regional model produces larger amplitudes compared to a global model, which is expected
due the regional optimization. Figure 7.1c shows a difference map of the radial component of
the LCS-1 model and the L1-norm regularized regional model. The amplitudes of the differences
are highest over the anomaly which is a result of the regional model producing larger amplitudes
over the anomaly. The differences in the surrounding regions suggest good agreement with the
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7.1. Model Comparison

LCS-1 model. Considering this is a first attempt at constructing a regional model over the Bangui
Anomaly using the Python toolbox, I think the approach shows excellent promise at low latitudes.
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7.1. Model Comparison

The Mauersberger-Lowes power spectra shown in Figure 6.8 introduced peculiar behaviour at large
spherical harmonic degrees where the power sharply increased. I urge caution interpreting upon this
result, as the Gauss coefficients are not directly obtained, but rather computed via the Slepian model
parameters and the kernel matrix eigenvectors. This tendency where a sharp peak appears at large
spherical harmonic degrees are likely due to numerical instabilities. I use the Mauersberger-Lowes
power spectra mainly to investigate if the regularization and model parameters are reasonable.
An unreasonable regularization causes the Gauss coefficients obtained from the Slepian model
parameters to either ’explode’ or be suppressed which is visible in such a power spectrum. Figure 7.2
presents an example of the former, where the regularization parameter for an L1-norm regularized
solution is α2 = 1× 10−6 nT−1, which will result in a largely under-regularized model. The model
produced in this example is clearly not sensible.

(a) Mauersberger-Lowes power
spectrum.

(b) Prediction map at Earth’s
mean spherical surface. Radial
component.

Figure 7.2: Example of an under-regularized L1-norm regularized solution.
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7.1. Model Comparison

7.1.2 Australia

I compare the L1-norm predictions of the regional model over Australia, with predictions from the
EMM2015 model in Figure 7.3. Comparisons of both regularization types with the LCS-1 model
and the L2-norm regularized solution with the EMM2015 model are found in Appendix B.2.

The regional model, Figure 7.3a, of Australia overall captures the same anomalies as the EMM2015
model, Figure 7.3b, does. The South Central anomaly is well presented in the regional model,
and the smaller structures in East Australia seem to be more coherent compared to the EMM2015
prediction. Predictions of West Australia seem quite similar for the two models, with the exception
of some probably better defined smaller features in the EMM2015 prediction. The maximum and
minimum values of the regional prediction are 528.77 nT and −285.99 nT, respectively, while for
the EMM2015 prediction they are 506.16 nT and −364.10 nT, respectively. For the EMM2015
prediction, the minimum value is located within the South Central anomaly, and is from the radial
component of the magnetic field prediction. The regional prediction minimum is located at 138◦

E and 15◦ S which is in the Northern part of Australia, from the co-latitudinal component of the
magnetic field prediction. Thus, the two models predict the location of the minimum values very
differently. In the case of the Australia region, the regional model do not show larger amplitudes as
for the Bangui Anomaly, only the positive value shows larger amplitude. I suspect the estimation of
the data uncertainties used in the inversion may have caused the large data misfit from Figure 6.13.
This will impact the regional model and may explain why the regional model does not produce
larger amplitudes in predictions.

From the difference map in Figure 7.3c it is clear that edge effects are present in the regional model.
But it also becomes clear that removing the outer five degrees of the spherical cap prediction will
provide very reasonable results when compared to EMM2015. The difference map shows largest
amplitudes over larger anomalies such as the South Central Anomaly. Due to the lower amplitudes
observed otherwise, I believe there is good agreement between the two models.

The regional model of Australia perhaps lack some details in the anomaly structures compared to
EMM2015. However, the regional model presented in this thesis is a first attempt at producing such
a regional model and improvements can be made in areas such as data selection, data uncertainties
and tuning of the regularization parameter.
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7.1. Model Comparison

7.1.3 Walvis Ridge

The L1-norm regularized regional model is compared to the LCS-1 model in Figure 7.4. The L2-
norm regional model comparison with LCS-1 is found in Appendix B.3

The regional model, Figure 7.4a, of the Walvis ridge also captures the overall anomalies compared
to the LCS-1 model, Figure 7.4b. Maximum and minimum for the regional model are 230.38 nT
and −420.63 nT, respectively, and for LCS-1 they are 236.39 nT and −349.05 nT. The regional
model thus only captured larger values in the negative domain. I believe this is likely due to edge
effects of the L1-norm regularized model. The South Atlantic isochrones are perhaps not as well
defined in the regional model, as in the LCS-1 model. Furthermore, the regional model also shows
extensive edge effects as opposed to the LCS-1 model. The North-South trending feature described
in Olsen et al. (2017), located between latitudes 30◦ S and 45◦ S and along approximately 5◦ E,
seem to be captured in the regional model. This further suggests that this feature is real.

The difference map, Figure 7.4c has largest amplitudes over the Walvis Ridge Anomaly, which is
expected. It suggests overall good agreement between the two models.

I believe the regional model has much room for improvement, however this is a first approach to a
mainly oceanic inversion. Despite the discrepancies, I believe the regional model shows promise in
this region.
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7.1. Model Comparison

7.1.4 Greenland

In this section I will discuss the regional prediction maps produced for Greenland compared with
LCS-1 and EMM2015. This is a particularly interesting region due its high latitudes. The LCS-1
comparison with the L1-norm regularized model is presented in Figure 7.5 and the EMM2015 com-
parison with the L1-norm regularized model is presented in Figure 7.6. Both L2-norm regularized
model comparisons are found in Appendix B.4.

Over Greenland, studies of the Curie boundary using models of the lithospheric magnetic field
is being carried out, e.g. in Martos et al. (2018). I believe that using regional models with
aeromagnetic data combined with satellite data will provide excellent models for improving on
these types of studies. The following results has been modelled only using satellite data.

7.1.4.1 Comparison With the LCS-1 Model

The regional prediction over the Greenland region, Figure 7.5a performs significantly better than
the LCS-1 prediction of the same region, Figure 7.5b. The LCS-1 prediction is highly affected by the
L1-norm regularization. This comes to show as many small scale features are damped. Inspecting
the regional model prediction, much more structures, large as well as small, is seen. The large scale
features predicted by the regional model are also predicted by the LCS-1 model. This yields good
agreement of large scale structures between the two models, but nothing can be concluded for the
smaller scale features. The South-Western feature around (lon, lat) = (63◦ N, 50◦ W ) expanding
westwards into the ocean is not visible in the LCS-1 prediction as it is for the regional model
prediction. Thus nothing can be concluded about this peculiar feature. The regional model have
maximum and minimum of 311.42 nT and −400.27 nT, respectively, and the LCS-1 model they are
198.73 nT and −288.17 nT which shows the regional model producing much larger amplitudes. The
difference map of the radial component of the LCS-1 model and the L1-norm regularized regional
model, Figure 7.5c, is difficult to interpret upon, due to the obvious difference in small scale features
of the two predictions.

7.1.4.2 Comparison With the EMM2015 Model

The regional prediction over the Greenland region, Figure 7.6a performs comparably to the EMM2015
prediction of the same region, Figure 7.6b. The EMM2015 prediction includes aeromagnetic data,
which enables the model to predict more fine scale features, compared to the LCS-1 model. There
is now some agreement to be seen with the smaller scale features of the EMM2015 model compared
to the regional model. Agreement is also found in the large scale features, including the South-
Western feature around (lon, lat) = (63◦ N, 50◦ W ) expanding westwards into the ocean. This
suggests that the feature might be real. Generally, the smaller scale features over Greenland are
predicted with smaller amplitude in the regional model compared to the EMM2015 model, with the
exception of South-East Greenland. The regional model have maximum and minimum of 311.42
nT and −400.27 nT, respectively, and the EMM2015 model they are 195.66 nT and −316, 85 nT.
It is highly encouraging to see the regional model producing larger amplitudes than the EMM2015
model. The difference map of the radial component of the EMM2015 model and the L1-norm
regularized regional model, Figure 7.6c, suggests agreement between the two models. The degree
of the agreement is up to debate, but I believe the regional model produces sensible results. The
South-Western feature around (lon, lat) = (63◦ N, 50◦ W ) is evident in the difference map, which
might suggest amplitudes are predicted differently between the two models.
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7.2. Influence of the Slepian Truncation Parameter

7.2 Influence of the Slepian Truncation Parameter

Up until this point it has been discussed that the Slepian truncation parameter J plays an impor-
tant role in constructing sensible models. No real proof as been provided to back up this claim. In
this section I will discuss the AC-GVSF power spectra for the Bangui Anomaly region, and how
these are used as a diagnostic tool to determine a good Slepian truncation parameter.

The power spectra of the AC-GVSF are computed using Equation (3.51) and there are J = 1500
of them to investigate. Luckily they do not change rapidly, so I can investigate out-takes of the
power spectra for this region. The power spectra of the AC-GVSF is an important diagnostic tool
to investigate power distribution with respect to spherical harmonic degrees. If there are spherical
harmonic degrees where the AC-GVSF power spectra do not deposit power, this indicates that the
choice of J is bad. Consider the nine out-takes of the 1500 AC-GVSF power spectra in Figure 7.7.
These suggest that power is in fact distributed through all spherical harmonic degrees apart from
the very lowest that are related to the core field. This indicates a good choce in J . If J is chosen
too small, power will mainly be distributed at lower spherical harmonic degrees, indicating that J
must be increased. If J is chosen too large, instabilities can be introduced, due to some functions
having little to no power in the spherical harmonic degrees that are investigated.

Figure 7.7: Normalized power of AC-GVSF with respect to spherical harmonic degrees. The
normalization is with respect to the highest value in a given power spectrum, such that power
varies from 0-1. Panel a) J = 1, b) J = 200, c) J = 400, d) J = 600, e) J = 800, f) J = 1000,
g) J = 1200, g) J = 1400 and h) J = 1500.
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7.3 Correction of Aeromagnetic Data

Aeromagnetic surveys may be used to investigate short wavelength magnetic signals of the litho-
spheric field. This is due to the relatively low observation altitudes of aeroplanes compared to
satellites.

In order to properly investigate the short wavelength signals of the lithospheric field, the aeromag-
netic data must be processed to exclude the effects of larger scale features, such as the core field
and larger scale lithospheric contributions.

The Earth’s magnetic core field, spherical harmonic degrees 1-15, can be filtered out using the
CHAOS-6 model as a priori (Finlay et al., 2016). This thesis provides an excellent method for
filtering out high spherical harmonic degrees related to the larger scale features of the lithospheric
field. Regional effects are potentially better accounted for using the Slepian approach rather than
a global model (e.g. LCS-1 (Olsen et al., 2017), MF7 (Maus et al., 2007) and EMM2015 etc.)
because the optimization problem is performed locally. I suggest for low latitude regions to use
the Slepian approach up to spherical harmonic degree L = 175. For higher latitudes, it is more
difficult to provide suggestions at this stage. I will note that this regional approach looks very
promising over Greenland, and I will not be surprised to see reliable high resolution models when
a few improvements have been incorporated. For the moment, my suggestion is using this regional
approach up to a maximum of spherical harmonic degree L = 150 for the higher latitudes.

I believe, because this regional approach suggest more details in some anomalies and smaller-scale
features, it is going to be a good addition to the existing modelling tools.

7.4 As Swarm Descends

Comparing the Slepian approach to regional modelling with global models, particularly such as
MF-6 (Maus et al., 2007) and MF-7, the aspect of what data is used must be considered. The
MF-models uses CHAMP data exclusively, while LCS-1 incorporates not only Swarm data but also
utilizes gradient data as introduced in Chapter 2.

This Slepian approach to regional modelling is based on an updated LCS-1 data set. For the time
being the Swarm satellites are at relatively high altitudes compared to CHAMP as also seen in
Figure 2 in Olsen et al. (2017). As the Swarm satellites descend it is expected to see an increase in
power of higher spherical harmonic degrees, which is visualized in Figure 1 in Olsen et al. (2017).

Updating regional models with the years to come will definitely show improvements in the higher
spherical harmonic degrees. Certainly, Swarm provides high quality data at the lower spherical
harmonic degrees up to around degree L = 120. The remaining spherical harmonic degrees are
currently likely to be explained at best using CHAMP data.

7.5 Regional Modelling Using a Slepian Approach

I dedicate this section to the pros and cons of regional modelling using the Slepian approach using
the Python toolbox developed in this thesis. First a look at the advantages of using this regional
modelling approach, followed by possible limitations.
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7.6. A Note on the Change in Project Plan

7.5.1 Advantages

This thesis presents a newly developed Python toolbox that uses real, globally defined, spherical
harmonics to perform local analyses of the Earth’s lithospheric magnetic field. During comparison
with e.g. LCS-1 predictions it became clear that this newly developed toolbox is capable of pro-
ducing high resolution models that probably suggests more detailed structures to known anomalies.

The regional models are particularly interesting at higher latitudes, where global models such as
LCS-1 seem to be limited. I have produced maps over Greenland where a much greater level of
structure is seen. In lower latitudes this regional approach seem to produce results quite close to
the LCS-1 model, with the exception of possibly introducing finer details.

What is definitely the case, is that interdisciplinary scientific studies will benefit greatly from
better knowing e.g. the lithospheric magnetic field. I believe this regional approach offers a good
opportunity to produce better estimates of the lithospheric magnetic field, particularly at high
latitudes. Studies of the Curie boundary over Greenland could be an investigation that will benefit
from regional modelling.

7.5.2 Limitations

All methods are bound by limitations. So is the Slepian approach to regional modelling. One of
the more difficult aspects is determining the truncation parameter J . The diagnostic tools intro-
duced in this thesis are power spectra of AC-GVSF and eigenvalue plots with respect to amount
of AC-GVSF. These are highly subjective approaches. People may interpret what well-determined
eigenvalues are differently, and thus construct the truncated eigenvector matrix differently. The
power spectra approach also requires the user to investigate many figures. Even if this is done,
there is no guarantee that this yields the ’correct’ result.

This thesis introduced the limitation of edge-effects in regional predictions of Australia. I think
most regional models are prone to issues like this. What is also true is that one may remove an
outer ring of the spherical cap to circumvent this effect. I think this shows great promise, as com-
puting models e.g. with a 20◦ opening angle instead of e.g. a 15◦ opening angle is not so much
more computationally demanding.

There are methods of estimating the optimum number of AC-GVSF to use in a model, introduced
in Plattner and Simons (2017). This incorporates a bias, variance and mean-square error of a large
set of models, and is thus very comprehensive. I have found that estimating a number of J from
an eigenvalue plot and adjusting the model from this estimate is an efficient way of producing
promising, high resolution regional models of the Earth’s lithospheric magnetic field.

7.6 A Note on the Change in Project Plan

The project plan was revised during the project period. The original project plan is shown in
Appendix A, while the revised plan is shown in Section 1.1. The regions of interest were changed
because we believed models at high latitude were of high importance, to show the capabilities of
the Python toolbox at various latitudes. Furthermore, the LCS-1 model did not perform well over
Greenland, so it was worthwhile investigating this region with a different approach. The reduction
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in regions of interest was due to redundancy in regions at certain latitudes, as well as type of
region.
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Chapter 8

Conclusion

This work has introduced the Slepian approach to regional modelling implemented as a Python
toolbox for computing regional models of the lithospheric magnetic field. I construct a localized
kernel matrix using globally defined spherical harmonic functions linearly combined for regional
optimization. Furthermore, I obtain AC-GVSF from the kernel matrix to construct localized de-
sign matrices used in potential field modelling to obtain Slepian model parameters.

The Slepian approach to regional modelling was benchmark tested over the Bangui Anomaly which
suggested that the toolbox is capable of reproducing a synthetic test case reliably.

Utilizing data from the CHAMP and Swarm missions with selection criteria described in Olsen
et al. (2017), I employed the Python toolbox to construct several models over regions with geo-
physical interest on the Earth. These regions include: a large amplitude anomaly at low latitudes
with the Bangui Anomaly, a mid-latitude thoroughly investigated region with Australia, an oceanic
region with the Walvis Ridge, and a high-latitude region of high scientific interest with Greenland.

I implemented L1-norm and L2-norm regularization to handle instabilities at high spherical har-
monic degrees and complex noise in data. This was successfully implemented and regional models
were constructed for all regions of interest. I consulted diagnostic tools such as Mauersberger-Lowes
power spectra and the power spectra of AC-GVSF to determine the proper Slepian truncation pa-
rameter, J , to use.

The resulting models showed great potential for the Python toolbox when predicting the litho-
spheric field at high latitudes. It showed great agreement with the EMM2015 model, even though
the EMM2015 model utilizes aeromagnetic data (lower altitude data) where the regional model
utilizes satellite data only. This introduces great opportunities for modelling the lithospheric field
at higher latitudes using this Python toolbox, if aeromagnetic data is utilized in toolbox as well.
This is a strength of the Python toolbox, that aeromagnetic data is applicable in addition to satel-
lite data. Furthermore, as the Swarm satellites descend, finer scale features will be better resolved
using satellite data.

A common issue with regional models is the edge effect, which was also present in this analysis e.g.
over Australia. With the Slepian approach to regional modelling this problem can be circumvented
by expanding the spherical cap. One may remove unwanted contributions by cropping out the
newly added expansion of the resulting lithospheric magnetic field map to obtain only well-resolved

79



8.1. Outlook

maps. If one constructs a sufficiently large spherical cap, the target of interest will not be affected
by the cropping.

The regional model of the Bangui Anomaly did show larger amplitudes than the LCS-1 model as
well as suggesting a more detailed structure. I believe improvements can be made to the model,
but the current state of the Python toolbox can definitely be considered a proof of concept.

Over Australia, the Slepian approach to regional modelling performs well, but there are room for
improvement, as edge-effects were seen. However, compared to the EMM2015 model the regional
approach shows great promise.

The oceanic region over the Walvis Ridge did not show improvement over the LCS-1 model, sug-
gesting further work in this area is required.

Greenland provided an excellent benchmark for this Python toolbox as it is a high latitude region
because the poor representation of these regions in global models. The Slepian approach to re-
gional modelling produced excellent models using only radial components of gradient satellite data.
Compared to the LCS-1 model which is in fact a state-of-the-art global model derived from satellite
gradient data, this regional approach performed better. The EMM2015 model utilizes satellite and
aeromagnetic data where possible. The regional model agrees very well with this global model.

On a final note, while this has been a first look into the possibilities of the Slepian approach to
regional modelling implemented as a Python toolbox, and I believe this method shows great promise
and has a bright future in providing the scientific community with high-resolution regional models.

8.1 Outlook

Due to the time limitation of this thesis there are many changes to the developed toolbox that have
not been finished. These include

• Optimize the synthetic model scripts.

• Incorporate use of various types of data.

• Optimize user-friendly aspects of the toolbox, such as more options to construct more specific
models.

The results of this thesis are very encouraging, and I think further investigation with different data
selection criteria and perhaps mixing aeromagnetic data with satellite data when possible would
provide even more promising details of the lithospheric magnetic field.

The Slepian approach is not limited to modelling the Earth’s magnetic field alone. Because it is
a potential field approach, one can easily construct models over other planetary bodies or moons.
E.g. the Martian surface has been investigated in Plattner and Simons (2015) using satellite data.
The Moon is an example of an interesting place for lithospheric field modelling, which the Slepian
approach to regional modelling can be applied to.
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Appendix A

Original Project Plan

Thesis Project Plan

This document serves as the project plan of the master’s thesis of Rasmus Joost with supervisor
Chris Finlay. Major milestones will be presented in the following list, and sub-goals will be nested
within each milestone. The milestones presented reflect the learning objectives for the master thesis
found at http://sdb.dtu.dk/2018/35/703#Master’s_thesis. These are initial milestones and
are thus subject to change as the project evolves.

1. Literature study. Find relevant articles outside those provided by the supervisor.

2. Optimize the Slepian toolbox built in the synthesis project leading up to this thesis such that
the following is achieved:

(a) Computation optimization. Currently, a design matrix for spherical harmonic degree 50
requires more than 60 minutes of computation time. The optimization lies in determi-
nation of associated Legendre functions used in computing the kernel matrix.

(b) Preparation for real data. The toolbox must be prepared to handle satellite ’gradient’
data from Swarm satellites Alpha and Charlie (East-West gradient, across-track), and
CHAMP satellite (North-South gradient, along-track).

(c) Finalize and document toolbox with the aim of a GitHub release.

3. Perform studies of several regions of interest. The study will initially be carried out with
spherical harmonic degree 200. Regions include:

(a) Bay of Bengal.

(b) East African Rift.

(c) Bangui Anomaly (central Africa).

(d) Walvis Ridge and surrounding younger parts of the South Atlantic.

(e) Australia.

4. Compare results with other models such as the LCS-1 model.

5. Write up thesis.
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B.2. Australia
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B.3. Walvis Ridge
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Appendix C

Computation of Kernel and Design
Matrices

C.1 Kernel Matrix

Listing C.1: Code implementation for computing the kernel matrix.

1 import time
2 import numpy as np
3 from l i b . t o o l s import l e gendre as l e g
4 from l i b . t o o l s import GMT tools as gmt
5 from l i b . t o o l s import t o o l f u n c t i o n s as t o f t
6
7 def kernelK ( rcap , r , r r e f , Lmax , m) :
8 ’ ’ ’ K = kernelK ( rcap , r , r r e f , Lmax ,m)
9

10 Computes a l o c a l i z e d k e r n e l matrix f o r a Polar cap o f r a d i u s rcap .
11 P o s s i b i l i t i e s o f p l a c i n g the k e r n e l a t v a r i o u s a l t i t u d e s are

implemented
12 with r and r r e f , where r r e f i s a r e f e r e n c e radius , e . g . Earth ’ s

r a d i u s .
13 The k e r n e l matrix i s c o n s t r u c t e d f o r a p a r t i c u l a r harmonic order , m

.
14
15 The k e r n e l matrix can be a r i b i t r a r i l y p lac ed at o the r c o o r d i n a t e s .
16 This i s done in r o t a t e g l m .
17
18 Computations are performed with r e s p e c t to P l a t t n e r and Simons 2017
19 Appendix A1 .
20
21 INPUT:
22 rcap Opening ang le o f s p h e r i c a l cap in rad ians .
23 r Continuat ion radius , e . g . s a t e l l i t e r a d i u s .
24 r r e f Reference radius , e . g . p l a n e t a r y r a d i u s −
25 i f r=r r e f , k e r n e l i s p l ace d at r r e f .
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26 Lmax S p h e r i c a l harmonic degree o f the k e r n e l to be
c o n s t r u c t e d .

27 m S p h e r i c a l harmonic order , 0 >=m >= L .
28
29 OUTPUT:
30 K L o c a l i z e d k e r n e l f o r the Polar cap . ’ ’ ’
31 t = time . time ( ) # Keep t r a c k o f computation time
32 ## Obtain Blm k e r n e l
33 # Determine amount o f nodes used in Gauss Legendre quadrature
34 g lnodes = max(200 ,2∗Lmax + 1)
35
36 # Assign zero as North Pole
37 npole = 0
38 x0 = np . cos ( rcap ) # Opening ang le o f the s p h e r i c a l cap
39 x1 = np . cos ( npole )
40
41 # Consider a b s o l u t e v a l u e o f m only
42 m = np . abs (m)
43
44 ## Compute B k e r n e l in accordance wi th P l a t t n e r & Simons 2017 Eq .

A4
45 i f Lmax == 0 : # L = 0 i s p u r e l y r a d i a l , so we c o n s i d e r on ly L > 0
46 Blm = [ ]
47 else :
48 Lmin = max(1 , m) # Minimum L i s at l e a s t 1 . Maximum i s a l r e a d y

g iven !
49 l ength = Lmax − Lmin + 1
50
51 # P r e a l l o c a t e space
52 Blm = np . z e ro s ( ( length , l ength ) )
53
54 # Avoid a l i a s i n g by check ing the n y q v i s t degree
55 i f g lnodes < (Lmax + 1) and g lnodes != 0 :
56 raise Warning ( ”Sample f i n e r to avoid a l i a s i n g . ” )
57
58 # Gauss Legendre quadrature i n t e g r a t i o n i n t e r v a l
59 in tv = np . array ( ( x0 , x1 ) )
60
61 x , w, N = l e g . g l q u a d i n i t ( glnodes , in tv )
62 #t1 = time . time ()
63 # Rewrite a b s i c a s s e s to c o l a t t i t u d e s ( in rad )
64 xacos = np . a r c co s ( x )
65 Xlm = np . z e r o s ( (N, l ength ) ) # P r e a l l o c a t e space f o r Xlm and

dXlm
66 dXlm = np . z e r o s ( (N, l ength ) )
67 for i in np . arange ( l ength ) : # Compute the Xlm and dXlm by Pnm

and dPnm
68 l = Lmin + i
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69 Pnm = gmt . get Pnm ( l , xacos ) # Obtain e v a l u a t e d Legendre
f u n c t i o n s

70 dPnm = Pnm[m] [ l +1] # . . . and t h e i r d e r i v a t i v e s
71
72 Xlm [ : , i ] = (Pnm[ l ] [m] ∗ np . s q r t (2∗ l + 1) ) /(np . s q r t (2 − (m

== 0) ) )
73 dXlm [ : , i ] = (dPnm ∗ np . s q r t (2∗ l + 1) ) /(np . s q r t (2 − (m ==

0) ) )
74 # C a l c u l a t e Gauss Legendre products , i . e . app ly Xlm and dXlm in

Eq . A4
75 # of P l a t t n e r & Simons 2017
76 Bprodint = np . z e ro s ( (N, int ( ( l ength ∗∗2 + length ) /2) ) ) #

P r e a l l o c a t e
77 idx = 0 # Index ing
78 for i in np . arange ( l ength ) : # i w i l l index l in Xlm and dXlm
79 for j in np . arange ( i , l ength ) : # j w i l l index l ’ in Xlm and

dXlm
80 l = Lmin + i
81 lpr ime = Lmin + j
82 Bprodint [ : , idx ] = 2 ∗ np . p i / np . s q r t ( l ∗( l + 1) ∗ \
83 lpr ime ∗( lpr ime + 1) ) ∗ \
84 (dXlm [ : , i ]∗dXlm [ : , j ] + m / \
85 np . s i n (np . a r c co s ( x ) ) ∗Xlm [ : , i ]∗\
86 m / np . s i n (np . a r c co s ( x ) ) ∗Xlm [ : , j ] )
87 idx += 1
88 Bw = Bprodint .T @ w # Apply w e i g h t s
89 idx = 0 # Transform Blm to upper t r i a n g l e matrix
90 for i in np . arange ( l ength +1) :
91 for j in np . arange ( i , l ength ) :
92 Blm [ i , j ] = Bw[ idx ]
93 idx += 1
94 # F i l l the lower t r i a n g l e o f matrix
95 Blm = Blm + Blm .T − np . diag (np . d iag (Blm) )
96 Blm = Blm/4/np . p i # Sca le Blm
97 #p r i n t (”Blm c o n s t r u c t e d f o r m = %i , i t took %f seconds ”\
98 # %(m, time . time ( )−t1 ) )
99 i f m == 0 : # Increase s i z e o f Blm i f m = 0 , to f i t Plm

100 Bzero = np . z e r o s ( (Lmax + 1 ,Lmax + 1) )
101 Bzero [ 1 : , 1 : ] = Blm . copy ( )
102 Blm = Bzero . copy ( )
103 ## Obtain Plm k e r n e l
104 # P r e a l l o c a t e space
105 Plm = np . empty ( (Lmax + 1 − max(m, 0 ) , Lmax + 1 − max(m, 0 ) ) )
106 Lmin = max(m, 0 ) # Ensure L >= m at a l l t imes
107 in tv = np . array ( ( np . cos ( rcap ) ,1 ) ) # I n t e g r a t i o n i n t e r v a l
108 #t2 = time . time ()
109 Nglprev=0
110 for L1 in np . arange (Lmin , Lmax + 1) :
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111 for L2 in np . arange (L1 , Lmax + 1) :
112 # Obtain i n i t i a t i n g v a l u e s f o r Gauss Legendre quadrature
113 g lnodes=max(L1+L2 , 200∗(m∗m != 0) )
114 xgl , wgl , Ngl = l e g . g l q u a d i n i t ( glnodes , in tv = None )
115 # Resca le xg l , t h i s can be ach ieved in g l q u a d i n i t , but

w e i g h t s must
116 # remain unsca led to ensure wgl . sum () = 2
117 xg l = intv [ 0 ] + ( xg l + 1) /2∗(np . d i f f ( in tv ) )
118 xacos = np . a r c co s ( xg l ) # Transform a b s i c a s s e s to c o l a t i t u d e
119 i f Nglprev != Ngl :
120 Pnm = gmt . get Pm (Lmax ,m, xacos )
121 integrand = Pnm[ L1 ] ∗ Pnm[ L2 ]
122 # F i n a l i z e computation and o b t a i n the Gauss Legendre

quadrature
123 glquad = ( wgl @ integrand ) ∗np . d i f f ( in tv ) /2
124 # I n s e r t Plm e n t r i e s
125 Plm [ L1 − Lmin , L2 − Lmin ] = glquad ∗ np . s q r t (2∗L1 + 1) ∗ \
126 np . s q r t (2∗L2 + 1) / \
127 (4∗np . p i ) ∗np . p i ∗(1+(m==0))
128 # Plm i s symmetric
129 Plm [ L2 − Lmin , L1 − Lmin ] = Plm [ L1 − Lmin , L2 − Lmin ]
130 Nglprev=Ngl
131 #p r i n t (”Plm c o n s t r u c t e d f o r m = %i , i t took %f seconds”%(m, time .

time ()−t2 ) )
132 b i g l = np . arange (Lmin , Lmax+1)
133
134 # S c a l i n g f a c t o r s f o r combining Blm and Plm to make Elm i n t e g r a d e d

product
135 facPmat = np . diag (np . s q r t ( ( b i g l + 1) / (2∗ b i g l + 1) ) )
136 facBmat = np . diag(−np . s q r t ( b i g l / (2∗ b i g l + 1) ) )
137
138 K = facPmat @ Plm @ facPmat .T + facBmat @ Blm @ facBmat .T
139
140 ## Continue k e r n e l to d e s i r e d l e v e l
141 b i g l = np . arange (Lmin , Lmax + 1)
142 # C a l c u l a t e BKB’ = (B(BK) ’) ’
143 K = kerne l con t inue (K, Lmax , r , r r e f , b i g l ) # BK
144 K = K.T # (BK) ’
145 K = kerne l con t inue (K, Lmax , r , r r e f , b i g l ) # B(BK) ’
146 K = K.T # (B(BK) ’) ’
147 K = (K + K.T) /2 # Avoid numerical d i s s y m m e t r i f i c a t i o n
148 print ( ”K const ruc ted f o r m = %i/%i in %f seconds ”
149 %(m, Lmax , time . time ( ) − t ) )
150
151 # Output
152 return K
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C.2 Design matrix

Listing C.2: Code implementation for computing design matrices.

1 def de s i gne va l (G, phi , theta , radi , r r e f , onorout=1) :
2 ’ ’ ’ Geval = d e s i g n e v a l (G, phi , the ta , radi , r r e f , onorout )
3
4 Eva lua tes the c o e f f i c i e n t s computed in glmalpha or r o t a t e g l m ( i . e .

G
5 matrix ) , a t data l o c a t i o n s . This b u i l d s de s i g n matr ices at a c t u a l
6 s a t e l l i t e a l t i t u d e s to e x t r a c t model parameters , and at a p l a n e t a r y
7 s u r f a c e to produce a model .
8
9 INPUT:

10 G Matrix o f AC−GVSF ’ s o b ta i ned by glmalpha or
r o t a t e g l m .

11 phi Data l o n g i t u d e s .
12 t h e t a Data c o l a t i t u d e s .
13 r a d i Data r a d i i , e . g . s a t e l l i t e r a d i i , or an array o f

p l a n e t a r y
14 r a d i i wi th the same s i z e as phi and t h e t a .
15 r r e f Reference radius , e . g . p l a n e t a r y r a d i u s .
16 onorout C o e f f i c i e n t format , addmon or addmout .
17 1 : addmout ( d e f a u l t )
18 0 : addmon .
19
20 OUTPUT:
21 Geval Matrix o f S l e p i a n b a s i s e v a l u a t e d at data l o c a t i o n s

.
22 Dimensions are J x 3k , where k=l e n ( phi ) . ’ ’ ’
23 # Determine maximum s p h e r i c a l harmonic degree
24 Lmax = int (np . s q r t ( len (G) ) − 1)
25 # Length o f data
26 dlen = len ( theta )
27 # Transform input c o e f f i c i e n t s
28 i f not onorout :
29 , , , , , , , , rinm = t o f t . addmon(Lmax)
30 G = G[ rinm , : ]
31
32 # P r e a l l o c a t e space
33 Geval = np . z e r o s ( (G. shape [ 1 ] , 3 ∗ dlen ) )
34
35 # Phase s h i f t l o n g i t u d e
36 phi = phi + np . p i
37 d i v s i n v a l s = 1/np . s i n ( theta )
38 # L=0 i s done s e p a r a t e l y , as f o r L=0, Elm = Ylm
39 L = 0
40 m = 0
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41 # Obtain Xlm f o r L , m = 0 , 0
42 Xlm = np . s q r t (2∗L+1)/np . s q r t (4∗np . p i ) ∗gmt . get Pnm (Lmax , theta ) [ L ,m

, : ]
43 # Continuat ion o f Xlm
44 Xlm ∗= ( (−L−1)/ r r e f ∗( r ad i / r r e f )∗∗(−L−2) )
45 # L o n g i t u d i n a l phase . For L = 0 , t h i s i s s imply an array o f ones
46 P = np . ones ( phi . shape )
47 Geval [ : , : d len ] = G[ L∗∗2 : (L+1) ∗ ∗ 2 , : ] .T ∗ np . r [ Xlm∗P]
48
49 # I t e r a t e over the remaining L ’ s
50 for L in np . arange (1 ,Lmax+1) :
51 m = np . arange(−L , L+1)
52 Pnm = gmt . get Pnm (L , theta ) # Legendre f u n c t i o n s
53 dPnm = Pnm[ abs (m) , L+1] # . . . and t h e i r d e r i v a t i v e s
54 # Compute Xlm and dXlm
55 Xlm = np . s q r t (2∗L + 1) / np . s q r t (4∗np . p i ) ∗ \
56 Pnm[ L , abs (m) , : ] ∗ np . c [(−1) ∗∗abs (m) /np . s q r t (2−(m==0)) ]
57 dXlm = np . s q r t (2∗L + 1) / np . s q r t (4∗np . p i ) ∗ \
58 dPnm ∗ np . c [(−1) ∗∗abs (m) / np . s q r t (2 − (m==0)) ]
59 # L o n g i t u d i n a l phase
60 P = np . cos (np . c [m]∗ np . r [ phi ] − \
61 np . p i /2∗np . c [m>0]∗np . ones ( ( 1 , len ( phi ) ) ) ) \
62 ∗ np . c [ np . s q r t (2 − (m==0)) ]
63 dP = −np . s i n (np . c [m]∗ np . r [ phi ] − \
64 np . p i /2∗np . c [m>0]∗np . ones ( ( 1 , len ( phi ) ) ) ) \
65 ∗ np . c [ np . s q r t (2−(m==0)) ∗m]
66
67 # Radia l f a c t o r
68 Rfac = np . t i l e ( (1/ r r e f ∗( r ad i / r r e f )∗∗(−L−2) ) , ( len (m) ,1 ) )
69
70 # Now perform a r e n o m a l i z a t i o n f o r E
71 # Erad = (−L−2)∗X∗P
72 # Etheta = dX∗P
73 # Ephi = 1/ s i n ( t h e t a )∗X∗dP
74 #
75 # Radia l f a c t o r i s i n c l u d e d in a l l the cases
76
77 # Sum over a l l deg rees
78 # Radia l component
79 Geval [ : , : d len ] = Geval [ : , : d len ] + \
80 G[ L∗∗2 : (L+1) ∗ ∗ 2 , : ] .T @ ((−L−1)∗Rfac∗Xlm∗P)
81 # C o l a t i t u d i n a l component
82 Geval [ : , d len :2∗ dlen ] = Geval [ : , d len :2∗ dlen ] + \
83 G[ L∗∗2 : (L+1) ∗ ∗ 2 , : ] .T @ ( Rfac∗dXlm∗P)
84 # L o n g i t u d i n a l component
85 Geval [ : , 2 ∗ dlen : ] = Geval [ : , 2 ∗ dlen : ] + \
86 G[ L∗∗2 : (L+1) ∗ ∗ 2 , : ] .T @ ( Rfac∗ \
87 np . t i l e ( d i v s i n v a l s , ( len (m) ,1 ) ) ∗Xlm∗dP)
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88
89 # Output
90 return Geval
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Appendix D

Gauss-Legendre Quadrature

1 # −∗− coding : u t f−8 −∗−
2 ”””
3 Legendre t o o l b o x f o r the Python S l e p i a n t o o l .
4 The t o o l b o x i s w r i t t e n by Rasmus R. Joost ,
5 based l a r g e l y on the work o f Alain P l a t t n e r
6 and Freder ik Simons in the S l e p i a n t o o l b o x
7 f o r Matlab : h t t p s :// g i t h u b . com/ S l e p i a n / S l e p i a n / w i k i
8 ”””
9 import numpy as np

10 from l i b . t o o l s import GMT tools as gmt
11
12 def r oo t s (Lmax ) :
13 ’ ’ ’ r , Jac = r o o t s (Lmax)
14
15 Computes Legendre po lynomia l o f degree Lmax r o o t s . The t r i−d i a g o n a l
16 Jacobian matrix i s c o n s t r u c t e d and e i g e n v a l u e s ( which are the r o o t s )
17 are e x t r a c t e d .
18
19 INPUT:
20 Lmax Legendre po lynomia l degree .
21
22 OUTPUT:
23 r r o o t s .
24 Jac Jacobian matrix . ’ ’ ’
25 # I n d i c e array
26 n = np . arange (1 ,Lmax)
27 # s u b d i a g o n a l array
28 d = n / np . s q r t (4 ∗ n∗∗2 − 1)
29 # Jacobian matrix , s h i f t s u b d i a g o n a l s +1 and −1 w. r . t d i a g o n a l
30 Jac = np . diag (d , k=1) + np . diag (d , k=−1)
31 # Obtain e i g e n v a l u e s o f Jacobian matrix
32 r , = np . l i n a l g . e igh ( Jac ,UPLO=’U ’ )
33
34 # Output
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35 return r , Jac
36
37 def g l q u a d i n i t ( l , i n tv ) :
38 ’ ’ ’ x ,w,N = g l q u a d i n i t ( l , i n t v )
39
40 For a po lynomia l degree l , the a b s i c a s s e s x , w e i g h t s w, and p o i n t s used
41 in i n t e g r a t i o n , N, are computed .
42 The i n t e g r a t i o n i n t e r v a l , in tv , must be d e f i n e d between [ −1 ,1 ] .
43 I t can e i t h e r be two v a l u e s or a 2D array o f vary ing i n t e r v a l s .
44
45 INPUT:
46 l Polynomial degree , e . g . Legendre po lynomia l degree .
47 i n t v I n t e g r a t i o n i n t e r v a l .
48
49 OUTPUT:
50 x A b s i c a s s e s o f Legendre−Gauss quadrature .
51 w Weights o f Legendre−Gauss quadrature .
52 N Points used in Legendre−Gauss quadrature . ’ ’ ’
53 N = int (np . c e i l ( ( l + 1) / 2) ) # Determine amount o f l e g e n d r e f u n c t i o n s
54 # Obtain a b s i c a s s e s f o r Gaussian quadrature
55 x , = roo t s (N)
56
57 i f N > 1 : # Obtain Legendre f u n c t i o n s , avoid i s s u e s at N=0
58 Pm = gmt . get Pm (N−1 ,0 ,np . a r c co s ( x ) )
59 else :
60 Pm = gmt . get Pm (N+(N==0) ,0 ,np . a r c co s ( x ) )
61 # Get w e i g h t s us ing l e g e n d r e po lynomia l o f degree N−1
62 Pl = Pm[N−1 , : ]
63 P l d i f f = −N ∗ Pl / ( x∗∗2 − 1)
64 # Weights
65 w = 2 / (1 − x∗∗2) / P l d i f f ∗∗2
66
67 i f i n tv i s not None :
68 i f np . s i z e ( in tv ) == 2 : # I n t e r v a l are two s c a l a r s
69 a = intv [ 0 ]
70 b = intv [ 1 ]
71 # Resca le a b s i c a s s e s
72 x = a + ( x + 1)/2∗ ( b − a )
73 # Resca le w e i g h t s
74 w = w ∗ (b − a )/2
75 else : # I n t e r v a l s are arrays .
76 a = intv [ 0 , : ]
77 b = intv [ 1 , : ]
78
79 xtmp , wtmp = x , w
80 x = np . z e r o s ( ( len (xtmp ) , len ( a ) ) )
81 w = np . z e ro s ( ( len (wtmp) , len (b ) ) )
82
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83 for idx in np . arange ( len ( a ) ) :
84 x [ : , idx ] = a [ idx ] + (xtmp + 1)/2∗ ( b [ idx ] − a [ idx ] )
85 w [ : , idx ] = wtmp ∗ (b [ idx ] − a [ idx ] ) / 2
86
87 # Output
88 return x , w, N
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Rotating the Kernel Matrix

1 def rotglmalpha ( lmcosi , alpha , beta , gamma, rcsh ) :
2 ’ ’ ’ l m c o s i r o t = plm2rot ( lmcosi , alpha , beta , gamma, rcsh )
3
4 Rotates s p h e r i c a l harmonic c o e f f i c i e n t s on the u n i t sphere us ing
5 Euler a n g l e s in an a c t i v e r o t a t i o n convent ion ( Dahlen and Tromp

1998 pages
6 920−924, the i n v e r s e o f t h a t ) . The a c t i v e r o t a t i o n s are ach ieved by
7 a s e r i e s o f p a s s i v e r o t a t i o n s . These are r e l a t e d by f l i p p i n g the

s i g n s
8 o f Equat ions o f Appendix C. 8 in Dahlen and Tromp (1998) .
9 Y i e l d s c o e f f i c i e n t s o f r o t a t e d new f i e l d in the non−r o t a t e d

c o o r d i n a t e
10 system .
11
12 Euler a n g l e s used must be in degrees , and a lpha (0<360) , be t a

(0<180) ,
13 and gamma (0<360) .
14
15 INPUT:
16 lmcos i [ l m cos s i n ] matrix wi th order m>=0.
17 alpha , Euler a n g l e s in deg ree s . Rotat ions are over
18 beta , a lpha around z , i n c r e a s i n g from y to x , then
19 gamma b e ta around o l d y , i n c r e a s i n g from x to z , then
20 gamma around o l d z , i n c r e a s i n g from y to x .
21
22 rcsh 1 : c o e f f i c i e n t s be lon g to r e a l harmonics ,
23 0 : c o e f f i c i e n t s be lon g to complex harmonics .
24
25
26 OUTPUT:
27 l m c o s i r o t [ l m c o s r o t s i n r o t ] , i . e . matrix wi th r o t a t e d

co s in e
28 and s i n e c o e f f i c i e n t s . ’ ’ ’
29 # P r e a l l o c a t e space
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30 Crot = np . z e r o s ( len ( lmcos i [ : , 0 ] ) )
31 Srot = np . z e ro s ( len ( lmcos i [ : , 0 ] ) )
32
33 i f alpha == 0 and beta == 0 and gamma == 0 : # No r o t a t i o n i f a n g l e s

are zero
34 l m c o s i r o t = lmcos i . copy ( )
35 return l m c o s i r o t
36 else :
37 # Convert r o t a t i o n c o o r d i n a t e s to rad ians
38 alpha = alpha ∗np . p i /180
39 beta = beta ∗np . p i /180
40 gamma = gamma∗np . p i /180
41
42 # Find maximum s p h e r i c a l harmonic degree
43 Lmax = int (max( lmcos i [ : , 0 ] ) )
44 l m c o s i r o t = lmcos i . copy ( )
45
46 # Obtain Wigner−D r o t a t i o n matrix f o r s p h e r i c a l harmonics
47 D, = dlmb (Lmax)
48
49 i f rc sh == 1 :
50 lmcos i = r2c ( lmcos i )
51
52 # Pass ive r o t a t i o n over a lpha − p i /2
53 C, S = r o t c o f ( lmcos i [ : , 2 ] , lmcos i [ : , 3 ] , alpha−np . p i /2)
54
55 # Loop over a l l de gree s
56 Cbeta = np . cos (np . arange (0 ,Lmax+1)∗beta )
57 Sbeta = np . s i n (np . arange (0 ,Lmax+1)∗beta )
58 for l in np . arange (0 ,Lmax+1) :
59 # Constuct a l t e r n a t i n g matr ices wi th twos and z e r o s
60 i , j = np . meshgrid (np . arange (0 , l +1) ,np . arange (0 , l +1) )
61 Czeros = np . mod( i+j+np . mod( l +1 ,2) ,2 ) ∗2
62 Czeros [ : , 0 ] = 1
63 Szeros = np . mod( i+j+np . mod( l , 2 ) , 2 ) ∗2
64 Szeros [ : , 0 ] = 1
65
66 # Pass ive r o t a t i o n over −p i /2
67 Ccos , , = shcos (C, l )
68 Ssin , , = sh s in (S , l )
69
70 Crotneg = D[ l ] . T ∗ Czeros @ Ccos
71 Srotneg = D[ l ] . T ∗ Szeros @ Ss in
72
73 # Pass ive az imutha l r o t a t i o n over b e t a
74
75 Crotbeta = Crotneg ∗ Cbeta [ 0 : l +1] + Srotneg ∗ Sbeta [ 0 : l +1]
76 Srotbeta = Srotneg ∗ Cbeta [ 0 : l +1] − Crotneg ∗ Sbeta [ 0 : l +1]
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77
78 # Pass ive r o t a t i o n over p i /2
79 Crotpos = np . dot (D[ l ] ∗ Czeros , Crotbeta )
80 Srotpos = np . dot (D[ l ] ∗ Szeros , Srotbeta )
81
82 # F i l l d
83 l o = int (addmup( l −1,drk=None ) )
84 h i = int (addmup( l , drk=None ) )
85 Crot [ l o : h i ] = Crotpos . copy ( )
86 Srot [ l o : h i ] = Srotpos . copy ( )
87
88 # Pass ive az imutha l r o t a t i o n over gamma + p i /2
89 Crotgam , Srotgam = r o t c o f ( Crot , Srot , gamma+np . p i /2)
90 l m c o s i r o t [ : , 2 ] = Crotgam . copy ( )
91 l m c o s i r o t [ : , 3 ] = Srotgam . copy ( )
92
93 i f rc sh == 1 :
94 l m c o s i r o t = c2r ( l m c o s i r o t )
95
96 # Output
97 return l m c o s i r o t
98
99 def dlmb (L) :

100 ’ ’ ’ D, d = dlmb (L)
101
102 Compute matrix e lements f o r s p h e r i c a l harmonic p o l a r r o t a t i o n

around
103 the y−a x i s over 90 de gree s . The r o t a t i o n i s s p l i t i n t o two parts ,
104 both c o n t a i n i n g a cons tant −p i /2 r o t a t i o n − o t h e r s are az imutha l .
105
106 Based on a code by T. Guy Masters .
107
108 INPUT:
109 L S p h e r i c a l harmonic degree .
110
111 OUTPUT:
112 D Wigner D−matrix f o r m>=0. ’ ’ ’
113
114 # P r e a l l o c a t e space , determine output s i z e
115 d = np . z e r o s (np .sum( ( np . arange (L+1) + 1) ∗∗2) )
116 d [ 0 ] = 1
117
118 i f L >= 1 :
119 d [ 1 ] = 0
120 d [ 2 ] = 1/np . s q r t (2 )
121 d [ 3 ] = −1/np . s q r t (2 )
122 d [ 4 ] = 1/2
123 # Prepare loop over a l l deg rees
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124 idx = 4
125 f1 = 1/2
126 for l in np . arange (2 ,L+1) :
127 lp = l+1
128 kdx = idx+lp
129 f l = l + lp
130
131 f = np . s q r t (np . arange (1 , l +1) ∗ ( f l − np . arange (1 , l +1) ) )
132 f1 = f1 ∗(2∗ l −1)/(2∗ l )
133
134 d [ kdx ] = −np . s q r t ( f 1 )
135 d [ kdx−1] = 0
136
137 for i in np . arange (2 , l +1) :
138 j = kdx−i
139 d [ j ] = −f [ i −2]∗d [ j +2]/ f [ i −1]
140
141 # P o s i t i v e N ( bottom t r i a n g l e )
142 f2 = f1
143 g1 = l
144 g2 = lp
145
146 for N in np . arange (1 , l +1) :
147 kdx = kdx + lp
148 en2 = N+N
149 g1 += 1
150 g2 −= 1
151 f2 = f2 ∗g2/g1
152 d [ kdx ] = −np . s q r t ( f 2 )
153 d [ kdx−1] = d [ kdx ]∗ en2/ f [ 0 ]
154
155 for i in np . arange (2 , l−N+1) :
156 j = kdx − i
157 d [ j ] = ( en2∗d [ j +1] − f [ i −2]∗d [ j +2]) / f [ i −1]
158
159 # Upper t r i a n g l e
160 for i in np . arange (1 , l +1) :
161 for j in np . arange ( i , l +1) :
162 d [ idx+j ∗ lp+i ] = d [ idx+i ∗ lp+j−l ]
163 # Fix s i g n s
164 i s n = 1+np . mod( l , 2 )
165 for i in np . arange (0 , l +1) :
166 kdx = idx + i ∗ lp
167 for j in np . arange ( i sn , lp +1 ,2) :
168 d [ kdx+j ] = −d [ kdx+j ]
169
170 idx = idx + lp ∗ lp
171 d = d .T
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172 # Rearrange d i n t o r o t a t i o n matr ices . One entry per s p h e r i c a l
harmonic degree

173 D = [ ]
174 c s t = 0
175 for l in np . arange (1 ,L+2) :
176 i f l == 1 :
177 D. append (d [ c s t : c s t+l ∗∗2 ] )
178 else :
179 D. append (d [ c s t : c s t+l ∗ ∗ 2 ] . reshape ( l , l ) )
180 c s t = c s t + l ∗∗2
181
182 # Output
183 return D, d
184
185 def r2c ( lmcos i ) :
186 ’ ’ ’ lmrc = r2c ( lmcos i )
187
188 Transforms r e a l harmonic c o e f f i c i e n t s to complex harmonic

c o e f f i c i e n t s .
189
190 INPUT:
191 lmcos i [ l m cos s i n ] matrix wi th r e a l harmonic

c o e f f i c i e n t s .
192
193 OUTPUT:
194 lmrc [ l m cos s i n ] matrix wi th complex harmonic

c o e f f i c i e n t s . ’ ’ ’
195 , , mz , , , , , , = addmon( int (max( lmcos i [ : , 0 ] ) ) )
196 lmrc = lmcos i . copy ( )
197
198 # Divide by s q r t (2)
199 lmrc [ : , 2 : ] = lmcos i [ : , 2 : ] / np . s q r t (2 )
200 # Except mz e n t r i e s , i . e . m = 0
201 lmrc [ mz , 2 : ] = lmcos i [ mz , 2 : ]
202 # Output
203 return lmrc
204
205 def c2r ( lmrc ) :
206 ’ ’ ’ lmcos i = c2r ( lmrc )
207
208 Transforms complex harmonic c o e f f i c i e n t s to r e a l harmonic

c o e f f i c i e n t s .
209
210 INPUT:
211 lmrc [ l m cos s i n ] matrix wi th complex harmonic

c o e f f i c i e n t s .
212
213 OUTPUT:
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214 lmcos i [ l m cos s i n ] matrix wi th r e a l harmonic
c o e f f i c i e n t s . ’ ’ ’

215 , , mz , , , , , , = addmon( int (max( lmrc [ : , 0 ] ) ) )
216 lmcos i = lmrc . copy ( )
217 # M u l t i p l y e v e r y t h i n g wi th s q r t (2)
218 lmcos i [ : , 2 : ] = lmrc [ : , 2 : ] ∗ np . s q r t (2 )
219 # Except mz e n t r i e s , i . e . m = 0
220 lmcos i [ mz , 2 : ] = lmrc [ mz , 2 : ]
221
222 # Output
223 return lmcos i
224
225 def r o t c o f ( cos , s in , ro t ) :
226 ’ ’ ’ Cosrot , S i n r o t = r o t c o f ( cos , sin , r o t )
227 Rotates r e a l harmonic c o e f f i c i e n t s over some ang le us ing Equation
228 (C.245 in Dahlen and Tromp (1998) ) .
229
230 INPUT:
231 cos Cosine c o e f f i c i e n t s .
232 s i n Sine c o e f f i c i e n t s .
233 r o t Rotat ion ang le [ rad ians ] .
234 OUTPUT:
235 Cosrot Rotated cos ine c o e f f i c i e n t s .
236 S i n r o t Rotated s i n e c o e f f i c i e n t s . ’ ’ ’
237 # Determine maximum s p h e r i c a l harmonic degree
238 L = int (addmup(np . s i z e ( cos ) ,0 ) )
239
240 Cosrot = cos . copy ( )
241 S in ro t = s i n . copy ( )
242
243
244 Cangl = np . cos (np . arange (0 ,L+1)∗ ro t )
245 #Cangl [ abs ( Cangl ) < 1e−10] = 0
246 Sangl = np . s i n (np . arange (0 ,L+1)∗ ro t )
247 #Sangl [ abs ( Sangl ) < 1e−10] = 0
248
249 for l in np . arange (0 ,L+1) :
250 # Extrac t c o e f f i c i e n t s
251 Ccos , lo , up = shcos ( cos , l )
252 Ssin , , = sh s in ( s in , l )
253
254 # Rotate and c o l l e c t
255 Cosrot [ l o : up+1] = Ccos∗Cangl [ : l +1] + Ss in ∗Sangl [ : l +1]
256 S in ro t [ l o : up+1] = Ss in ∗Cangl [ : l +1] − Ccos∗Sangl [ : l +1]
257
258 # Output
259 return Cosrot , S in ro t
260
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261 def shcos ( lmcosi , L) :
262 ’ ’ ’ Ccos , lo , up = shcos ( lmcosi , L)
263
264 Find co s in e c o e f f i c i e n t s b e l o n g i n g to degree L from a 1D or 2D

array , i . e .
265 i n p u t t i n g e i t h e r an array wi th cos ine c o e f f i c i e n t s or an lmcos i

matrix
266 o f [ l m cos s i n ] columns .
267
268 INPUT:
269 lmcos i as 2D array wi th [ l m cos s i n ] columns .
270 lmcos i as array wi th cos e n t r i e s from 2D array .
271 L s p h e r i c a l harmonic degree .
272
273 OUTPUT:
274 CCos Cosine c o e f f i c i e n t s b e l o n g i n g to degree L .
275 lo , up Upper and lower i n d i c e s o f c o e f f i e n t s from input .

’ ’ ’
276 # Determine input dimension and e x t r a c t minimum degree
277 i f lmcos i . ndim == 1 :
278 Lmin = 0
279 else :
280 Lmin = min( lmcos i [ : , 0 ] ) . astype ( int )
281
282 # Cosine c o e f f i c i e n t i n d i c e s b e l o n g i n g to degree L
283 l o = int (addmup(L−1 ,1) − addmup(Lmin−1 ,1) )
284 up = int (addmup(L , 1 ) − addmup(Lmin−1 ,1) − 1)
285
286 # Obtain c o e f f i c i e n t s
287 i f lmcos i . ndim == 1 :
288 Ccos = lmcos i [ l o : up +1] . copy ( )
289 else :
290 Ccos = lmcos i [ l o : up +1 ,2 ] . copy ( )
291
292 # Output
293 return Ccos , lo , up
294
295 def sh s i n ( lmcosi , L) :
296 ’ ’ ’ Ssin , lo , up = s h s i n ( lmcosi , L)
297
298 Find s i n e c o e f f i c i e n t s b e l o n g i n g to degree L from a 1D or 2D array ,

i . e .
299 i n p u t t i n g e i t h e r an array wi th cos ine c o e f f i c i e n t s or an lmcos i

matrix
300 o f [ l m cos s i n ] columns .
301
302 INPUT:
303 lmcos i as 2D array wi th [ l m cos s i n ] columns .
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304 lmcos i as array wi th cos e n t r i e s from 2D array .
305 L s p h e r i c a l harmonic degree .
306 OUTPUT:
307 Ssin Sine c o e f f i c i e n t s b e l o n g i n g to degree L .
308 lo , up Upper and lower i n d i c e s o f c o e f f i e n t s from input .

’ ’ ’
309 # Determine input dimension and e x t r a c t minimum degree
310 i f lmcos i . ndim == 1 :
311 Lmin = 0
312 else :
313 Lmin = min( lmcos i [ : , 0 ] ) . astype ( int )
314
315 # Sine c o e f f i c i e n t i n d i c e s b e l o n g i n g to degree L
316 l o = int (addmup(L−1 ,1) − addmup(Lmin−1 ,1) )
317 up = int (addmup(L , 1 ) − addmup(Lmin−1 ,1) − 1)
318
319 # Obtain c o e f f i c i e n t s
320 i f lmcos i . ndim == 1 :
321 Ss in = lmcos i [ l o : up +1] . copy ( )
322 else :
323 Ss in = lmcos i [ l o : up +1 ,3 ] . copy ( )
324
325 # Output
326 return Ssin , lo , up
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GMT tools

1 import numpy as np
2
3 def get Pnm (nmax , theta ) :
4 ”””
5 C a l c u l a t i o n o f a s s o c i a t e d Legendre f u n c t i o n s P(n ,m) ( Schmidt

normal ized )
6 and i t s d e r i v a t i v e dP(n ,m) v r t . t h e t a .
7
8 Input : t h e t a [ : ] co− l a t i t u d e ( in rad )
9 nmax maximum s p h e r i c a l harmonic degree

10 Output : Pnm ndarray PD with Legendre f u n c t i o n s
11
12 P(n ,m) ==> Pnm(n ,m) and dP(n ,m) ==> Pnm(m, n+1)
13 ”””
14
15 costh = np . cos ( theta )
16 s i n th = np . s q r t (1− costh ∗∗2)
17
18 Pnm = np . z e ro s ( (nmax+1, nmax+2, len ( theta ) ) )
19 Pnm [ 0 ] [ 0 ] = 1
20 Pnm [ 1 ] [ 1 ] = s in th
21
22 rootn = np . s q r t (np . arange (0 , 2∗nmax∗∗2+1) )
23
24 # Recursion r e l a t i o n s a f t e r Langel ”The Main F i e l d ” (1987) ,
25 # eq . (27) and Table 2 ( p . 256)
26 for m in np . arange (0 , nmax) :
27 # Pnm tmp = np . s q r t (m+m+1)∗Pnm[m] [m]
28 Pnm tmp = rootn [m+m+1]∗Pnm[m] [m]
29 Pnm[m+1] [m] = costh ∗Pnm tmp
30 i f m > 0 :
31 Pnm[m+1] [m+1] = s in th ∗Pnm tmp/ rootn [m+m+2]
32 for n in np . arange (m+2, nmax+1) :
33 d = n∗n − m∗m
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34 e = n + n − 1
35 Pnm[ n ] [m] = ( e∗ costh ∗Pnm[ n−1] [m]−\
36 rootn [ d−e ]∗Pnm[ n−2] [m] ) / rootn [ d ]
37
38 # dP(n ,m) = Pnm(m, n+1) i s the d e r i v a t i v e o f P(n ,m) v r t . t h e t a
39 Pnm [ 0 ] [ 2 ] = −Pnm [ 1 ] [ 1 ]
40 Pnm [ 1 ] [ 2 ] = Pnm [ 1 ] [ 0 ]
41 for n in np . arange (2 , nmax+1) :
42 l = n + 1
43 Pnm [ 0 ] [ l ] = −np . s q r t ( . 5 ∗ ( n∗n+n) ) ∗Pnm[ n ] [ 1 ]
44 Pnm [ 1 ] [ l ] = . 5∗ ( np . s q r t ( 2 . ∗ ( n∗n+n) ) ∗Pnm[ n ] [0 ] −\
45 np . s q r t ( ( n∗n+n−2.) ) ∗Pnm[ n ] [ 2 ] )
46
47 for m in np . arange (2 , n ) :
48 Pnm[m] [ l ] = . 5∗ ( np . s q r t ( ( n+m) ∗(n−m+1.) ) ∗Pnm[ n ] [m−1] −\
49 np . s q r t ( ( n+m+1.) ∗(n−m) ) ∗Pnm[ n ] [m+1])
50
51 Pnm[ n ] [ l ] = .5∗np . s q r t ( 2 .∗ n) ∗Pnm[ n ] [ n−1]
52
53 return Pnm
54
55 def get Pm (n , order , theta ) :
56 ”””
57 C a l c u l a t i o n o f a s s o c i a t e d Legendre f u n c t i o n s P(n ,m) ( Schmidt

normal ized )
58
59 Input : t h e t a [ : ] co− l a t i t u d e ( in rad )
60 nmax maximum s p h e r i c a l harmonic degree
61 Output : Pnm ndarray PD with Legendre f u n c t i o n s
62
63 P(n ,m) ==> Pnm(n ,m) and dP(n ,m) ==> Pnm(m, n+1)
64 ”””
65 i f type (n) != int :
66 nmax=max(n)
67 i f nmax==0:
68 nmax+=1
69 else :
70 nmax=n
71 costh = np . cos ( theta )
72 s i n th = np . s q r t (1− costh ∗∗2)
73
74 Pm = np . z e r o s ( (nmax+1, len ( theta ) ) )
75
76 rootn = np . s q r t (np . arange (0 , 2∗nmax∗∗2+1) )
77
78 # Recursion
79 for m in np . arange (0 , nmax) :
80 i f m==0:
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81 Pmdiag=np . ones ( len ( theta ) )
82 e l i f m==1:
83 Pmdiag=s in th
84 Pm tmp = rootn [m+m+1]∗Pmdiag
85 i f m == order :
86 Pm[m, : ] = Pmdiag
87 Pm[m+1 , : ] = costh ∗Pm tmp
88 for L in np . arange (m+2, nmax+1) :
89 d = L∗L − m∗m
90 e = L+L − 1
91 Pm[ L , : ] = ( e∗ costh ∗Pm[ L−1 ,:]− rootn [ d−e ]∗Pm[ L−2 , : ] ) /

rootn [ d ]
92 break
93 i f m > 0 :
94 Pmdiag = s in th ∗Pm tmp/ rootn [m+m+2]
95
96 return Pm
97
98 def design SHA ( r , theta , phi , nmax) :
99

100 ”””
101 Created on Fri Feb 2 09 :18 :42 2018
102
103 @author : n i l o s
104 A r , A theta , A phi = design SHA ( r , the ta , phi , N)
105
106 C a l c u l a t e s d es i gn matr ices A i t h a t connects the v e c t o r
107 o f ( Schmidt−normal ized ) s p h e r i c a l harmonic expansion c o e f f i c i e n t s ,
108 x = ( g 1 ˆ0; g 1 ˆ1; h 1 ˆ1; g 2 ˆ0; g 2 ˆ1; h 2 ˆ1; . . . g NˆN; h NˆN)
109 and the magnetic component B i , where ” i ” i s ” r ” , ” t h e t a ” or ” phi

” :
110 B i = A i∗x
111 Input : r [ : ] r a d i u s v e c t o r ( in u n i t s o f the r e f e r e n c e

r a d i u s a )
112 t h e t a [ : ] c o l a t i t u d e ( in rad ians )
113 phi [ : ] l o n g i t u d e ( in rad ians )
114 N maximum degree / order
115
116 A r , A theta , A phi = design SHA ( r , the ta , phi , N, i e f l a g )
117 with i e f l a g = ’ i n t ’ f o r i n t e r n a l sources ( g n ˆm and h n ˆm)
118 ’ e x t ’ f o r e x t e r n a l sources ( q n ˆm and s n ˆm)
119 ”””
120
121 cml = np . z e ro s ( (nmax+1, len ( theta ) ) ) # cos (m∗ phi )
122 sml = np . z e ro s ( (nmax+1, len ( theta ) ) ) # s i n (m∗ phi )
123 a r = np . z e ro s ( (nmax+1, len ( theta ) ) )
124 cml [0 ]= 1
125 for m in np . arange (1 , nmax+1) :
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126 cml [m]=np . cos (m∗phi )
127 sml [m]=np . s i n (m∗phi )
128 for n in np . arange (1 , nmax+1) :
129 a r [ n]= r ∗∗(−(n+2) )
130
131 Pnm = get Pnm (nmax , theta )
132 s i n th = Pnm [ 1 ] [ 1 ]
133
134 # c o n s t r u c t A r , A theta , A phi
135 A r = np . z e r o s ( (nmax∗(nmax+2) , len ( theta ) ) )
136 A theta = np . z e r o s ( (nmax∗(nmax+2) , len ( theta ) ) )
137 A phi = np . z e r o s ( (nmax∗(nmax+2) , len ( theta ) ) )
138
139 l = 0
140 for n in np . arange (1 , nmax+1) :
141 for m in np . arange (0 , n+1) :
142 A r [ l ] = (n+1.)∗Pnm[ n ] [m] ∗cml [m] ∗ a r [ n ]
143 A theta [ l ] = −Pnm[m] [ n+1] ∗cml [m] ∗ a r [ n ]
144 A phi [ l ] = m∗Pnm[ n ] [m] ∗ sml [m] ∗ a r [ n ] / s i n th
145 l=l+1
146 i f m > 0 :
147 A r [ l ] = (n+1.)∗Pnm[ n ] [m] ∗ sml [m] ∗ a r [ n ]
148 A theta [ l ] = −Pnm[m] [ n+1] ∗ sml [m] ∗ a r [ n ]
149 A phi [ l ] = −m∗Pnm[ n ] [m] ∗ cml [m] ∗ a r [ n ] /

s i n th
150 l=l+1
151 return A r . t ranspose ( ) , A theta . t ranspose ( ) , A phi . t ranspose ( )
152
153 def syn th g r id ( gh , r , theta , phi ) :
154 ”””
155 Created on Fri Feb 2 09 :18 :42 2018
156
157 @author : n i l o s
158 B r , B theta , B phi = s y n t h g r i d ( gh , r , the ta , ph i )
159
160 ”””
161 n c o e f f = len ( gh )
162 nmax = int (np . s q r t ( n c o e f f +1)−1)
163 N theta = len ( theta )
164 N phi = len ( phi )
165 n = np . arange (0 , nmax+1)
166
167 r n = r ∗∗(−(n+2) )
168
169 cos s in m = np . ones ( ( n c o e f f , N phi ) )
170 s in cos m = np . z e ro s ( ( n c o e f f , N phi ) )
171 T r = np . z e r o s ( ( n c o e f f , N theta ) )
172 T theta = np . z e ro s ( ( n c o e f f , N theta ) )
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173 T phi = np . z e r o s ( ( n c o e f f , N theta ) )
174
175 Pnm = get Pnm (nmax , theta )
176 s i n th = Pnm [ 1 ] [ 1 ]
177
178 k=0
179 for n in np . arange (1 , nmax+1) :
180 T r [ k ] = (n+1.)∗ r n [ n ]∗Pnm[ n ] [ 0 ]
181 T theta [ k ] = −r n [ n ]∗Pnm [ 0 ] [ n+1]
182 k = k+1
183 for m in np . arange (1 , n+1) :
184 T r [ k ] = (n+1)∗ r n [ n ]∗Pnm[ n ] [m]
185 T theta [ k ] = −r n [ n ]∗Pnm[m] [ n+1]
186 T phi [ k ] = m∗ r n [ n ]∗Pnm[ n ] [m] / s i n th
187 cos s in m [ k ] = np . cos (m∗phi )
188 s in cos m [ k+1] = cos s in m [ k ]
189 T r [ k+1] = T r [ k ]
190 T theta [ k+1] = T theta [ k ]
191 T phi [ k+1] = −T phi [ k ]
192 cos s in m [ k+1] = np . s i n (m∗phi )
193 s in cos m [ k ] = cos s in m [ k+1]
194 k = k+2
195
196 tmp = cos s in m ∗gh [ : , np . newaxis ]
197 B r = np . matmul ( T r . t ranspose ( ) , tmp)
198 B theta = np . matmul ( T theta . t ranspose ( ) , tmp)
199 B phi = np . matmul ( T phi . t ranspose ( ) , s in cos m ∗gh [ : , np . newaxis ] )
200
201 return B r , B theta , B phi
202
203 def r ead shc ( shc fn , c o l s=’ a l l ’ ) :
204 ”””
205 Read v a l u e s o f Gauss c o e f f i c i e n t s ( g , h ) from column ( s ) in f i l e .
206
207 F i l e shou ld be a s c i i f i l e obey ing the SHC format .
208
209 Parameters
210 −−−−−−−−−−
211 s h c f n : s t r
212 Path o f input SHC a s c i i f i l e
213 c o l s : l i s t l i k e
214 L i s t o f columns to read from f i l e . This shou ld correspond to the
215 columns the d i f f e r e n t t imes v a l u e s c o e f f i c i e n t s w i l l be
216 read from . In a standard SHC f i l e the f i r s t two columns (0 and 1)
217 correspond to the degree ( l ) and order (m) o f the harmonic and
218 shou ld not be i n c l u d e d in ‘ co l s ‘ . As such the d e f a u l t v a l u e
219 ‘ ‘ c o l s =’ a l l ’ ‘ ‘ corresponds to ‘ ‘ c o l s=range (2 ,2+ N times ) ‘ ‘ , where
220 ‘ ‘ N times ‘ ‘ i s the number o f time snapshot s in the f i l e .
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221
222 Returns
223 −−−−−−−
224 Tuple
225 Tuple wi th f o l l o w i n g v a l u e s at g i ven i n d i c e s :
226
227 0 . numpy . ndarray o f gauss ian c o e f f i c i e n t s wi th such t h a t
228 ‘ ‘ myarray [ 0 ] ‘ ‘ g i v e s a l l c o e f f i c i e n t s at the f i r s t time point

,
229 g iven t h a t t h e r e are m u l t i p l e time snapshots . Otherwise
230 ‘ ‘ array [ 0 ] ‘ ‘ w i l l on ly conta in the f i r s t c o e f f i c i e n t .
231 1 . s p l i n e order ‘ k ‘ as an i n t e g e r used to r e c o n s t r u c t model from
232 t ime snapshot s .
233 2 . number o f columns as an i n t e g e r .
234 3 . time o f the temporal snapshot s ( in f r a c t i o n a l years in the
235 s tandard SHC format ) as 1D ‘numpy . ndarray ‘ .
236
237 Notes
238 −−−−−
239 Missing data v a l u e s marked as NaN are c u r r e n t l y not handled .
240
241 ”””
242
243 with open( s h c f n ) as f :
244 header l en=0
245 h e a d e r f i n=False
246 for l i n e in f :
247 i f h e a d e r f i n : # f i n i s h e d read ing header
248 t imes=np . empty ( N times )
249 c=0
250 for t in l i n e . s p l i t ( ) :
251 t imes [ c ]= f loat ( t )
252 c+=1
253 break
254 else :
255 i f l i n e . s t a r t s w i t h ( ’#’ ) :
256 header l en+=1
257 else :
258 h e a d e r f i n=True
259 N min , N max , N times , s p l i n e o r d e r , N step = \
260 ( int ( v ) for v in l i n e . s p l i t ( ) [ : 5 ] )
261 c o l s=range (2 ,2+ N times )
262 # gh=np . l o a d t x t ( shc fn , sk iprows=header l en +2)
263 gh=np . l oadtx t ( shc fn , sk iprows=header l en +2, u s e c o l s=co l s , unpack=True )
264 # i f l e n ( gh . shape )==1:
265 # gh=np . expand dims ( gh , 0 )
266
267 # c u r r e n t l y not p a s s i n g on N min , N max , N step
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268 return gh , s p l i n e o r d e r , t imes
269
270 def mauersberge r lowes spec ( gh , r=1) :
271 ””” The Mauersberger−Lowes s p a t i a l powerspectrum ”””
272 r a t i o =1/r
273 N = int (np . s q r t ( gh . s i z e +1)−1) # maximum s p h e r i c a l harmonic degree
274 R l=np . empty (N)
275 gh idx=0
276 for l in range (1 ,N+1) :
277 gh idx n=gh idx+2∗ l+1
278 g sq=np .sum( gh [ gh idx : gh idx n ]∗∗2 )
279 R l [ l −1] = ( l +1)∗ r a t i o ∗∗(2∗ l +4)∗ g sq
280 gh idx=gh idx n
281 return R l
282
283
284 def d e g r e e c o r r e l a t i o n ( gh1 , gh2 , lmax=−1, lmin=1) :
285 ””” C o r r e l a t i o n per s p h e r i c a l harmonic degree between two models 1

and 2”””
286 i f lmax<1:
287 lmax1 , lmin1=get l maxmin ( len ( gh1 ) )
288 lmax2 , lmin2=get l maxmin ( len ( gh2 ) )
289 lmax = min( lmax1 , lmax2 )
290 lmin = min( lmin1 , lmin2 )
291 c12=np . empty ( lmax+1−lmin )
292 i=0
293 for l in range ( lmin , lmax+1) :
294 #m=0
295 g12 = gh1 [ i ]∗ gh2 [ i ]
296 g11 = gh1 [ i ]∗∗2
297 g22 = gh2 [ i ]∗∗2
298 i+=1
299 for m in range (1 , l +1) :
300 g12 += gh1 [ i ]∗ gh2 [ i ]
301 g11 += gh1 [ i ]∗∗2
302 g22 += gh2 [ i ]∗∗2
303 i += 2
304 c12 [ l−lmin ] = g12/np . s q r t ( g11∗g22 )
305 return c12
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