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Abstract

Studying the Earth’s lithosphere has been an important field within solid Earth geophysics for many decades.
The respective signals originate from induced and remanent magnetic minerals in the crust and upper part
of the mantle. The lithospheric magnetic field is often denoted as a magnetic anomaly field, as the respective
signals are derived after removing the core field and external field contributions from the Earth’s magnetic
field observations. Apart from observations by satellites, the magnetic anomalies can be studied using ma-
rine and aeromagnetic surveys. Such measurements have contributed to our current knowledge of sea-floor
spreading and plate tectonics. They are also crucial for prospecting geologic structures, natural resource
exploration, determining the depth to magnetic basements, and subsurface navigation.

Global models of the Earth’s magnetic field are commonly based on spherical harmonics. This mathemati-
cal representation has some limitations when dealing with regional near-surface data or when data are not
distributed equally at the Earth’s surface. As an alternative, in this study schemes are developed that use
equivalent potential field sources for modeling the global and regional lithospheric magnetic field at the
Earth’s surface. The equivalent sources are arranged in equal-area grids below the Earth’s surface. The
source amplitudes are estimated using an iteratively re-weighted least-squares algorithm that includes model
regularization and Huber weighting.

An application of the proposed method to global field modeling is demonstrated using three-component satel-
lite measurements from CHAMP during its final operational period 2009–2010. Stable model predictions at
the Earth’s surface are derived using either quadratic, L1-norm or maximum entropy regularization. The
final models are chosen based on the model misfits and assessment of the derived lithospheric field structures
on surface maps. The derived model predictions show a degree correlation greater than 0.7 out to spherical
harmonic degree 100 with respect to other state-of-the-art global lithospheric field models. Compared to the
quadratic and L1-norm regularization approach, the preferred entropy regularized model possesses notably
lower power above degree 70 and a lower number of degrees of freedom despite globally fitting the observa-
tions to a very similar level.

A demonstration of the regional application of the equivalent point source routine is carried out based on
aeromagnetic scalar data from off-shore Norway. The chosen source grid size, source depth and regulariza-
tion parameter are important factors determining the level of misfit to the data and the model stability on
downward continuation. The regional application is also tested against real well data from the Ekofisk field
in the North Sea. For this test, small-scale signals of the lithospheric field are estimated using an equivalent
potential field source model based on aeromagnetic data, combined with the CHAOS-6 model (Finlay et al.,
2016a) for main field and large-scale lithospheric field predictions. Differences between the final model pre-
dictions and actual measurements are found to be within the acceptance limits of the industry. The model is
also compared to the industry-standard model BGGM2016, with differences mainly seen in the small-scale
lithospheric field predictions.

Finally, an attempt to combine satellite and near-surface measurements is made by producing an equiva-
lent point source model based on both radial CHAMP data and regional geomagnetic intensity data from
North America. Both the resulting intensity field map at the Earth’s surface and the regional power spec-
trum compare well with alternative high-resolution global lithospheric field models derived from satellite and
near-surface measurements.

Overall, this study demonstrates that equivalent point sources are a powerful tool for modeling the litho-
spheric field on both global and regional scales. The scheme has no restrictions on the data density, altitude
or area shape. Additionally, the model predictions can easily be projected to any surface and transferred
into spherical harmonics. The methodology is thereby a suitable candidate for future advanced applications
in directional surveying.
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Dansk resumé

I mange årtier har undersøgelsen af litosfæren været et aktuelt emne indenfor geofysik. Litosfæren er den
yderste og faste del af jorden og inkluderer b̊ade skorpen og den øverste del af kappen. Magnetiserede
mineraler i disse lag er årsagen til litosfærens bidrag til jordens magnetfelt. Til trods for dens lille andel
i det samlede geomagnetiske signal ved jordoverfladen har litosfærens magnetfelt en stor betydning for un-
dersøgelser af r̊astoffer, tykkelsen af det magnetiske lag og underjordisk navigation. Udover det skyldes en
stor del af vores nutidige viden om havbundsspredningen og pladetektonik studier af litosfærens magnetfelt.

Globale modeller af jordens magnetfelt er ofte baseret p̊a kuglefunktioner. Den tilsvarende matematiske
beskrivelse er ikke optimal n̊ar man har regionale data eller data med inhomogen fordeling. Som et alter-
nativ bliver der i denne afhandling produceret en metode baseret p̊a ækvivalente punktkilder (monopoler)
for at modellere litosfærens globale og regionale magnetfelt p̊a jordens overflade. Monopolerne er fordelt i et
gitter med lige store arealer under jordens overflade. De tilsvarende monopol amplituder estimeres ved brug
af en iterativ genvægtet mindste kvadraters metode som inkluderer model regularisering og Huber vægtning.
De resulterende modeller skal beskrive m̊alingerne s̊a godt som muligt, og derfor skal de tilsvarende forskelle
være lille.

Den globale anvendelse af metoden undersøges ved hjælp af de sidste års magnetfeltm̊alinger af satellitten
CHAMP. Modellernes stabile opførelse i feltstrukturen opn̊as ved brug af regularisering. Der undersøges tre
forskellige versioner heraf: kvadratisk, L1-norm og entropi regularisering. For hver af disse bliver der bestemt
en endelig model p̊a baggrund af mindst mulig diskrepans til m̊alingerne, samt de modellerede feltstrukturer
p̊a jordens overflade. Vores resultater indikerer god overensstemmelse med eksisterende globale litosfæriske
modeller. Sammenlignet med den endelige kvadratisk og L1-norm regulariserede model har den foretrukne
entropi regulariserede model mindre energi for bølgelængder mindre end 570 km og færre frihedsgrader selv
om alle tre modeller repræsenterer m̊alingerne med lignende præcision.

Den regionale anvendelse af metoden testes ved brug af aeromagnetiske feltstyrke m̊alinger fra Norge. I
forhold til den globale metode bruges der kun monopoler omkring data omr̊adet. Den tilsvarende mængde
af monopoler, deres dybde og metodens regulariseringsparametre er vigtige faktorer for modellernes forskelle
til m̊alingerne og evne til at estimere feltværdier under jordens overflade. Sidstnævnte er altafgørende for at
kunne bruge metoden for underjordisk navigation. For at undersøge om den regionale metode kan anven-
des i s̊adan en sammenhæng, bliver en monopol-baseret model sammenlignet med m̊alinger fra en brønd i
Nordsøen. For denne test bliver de sm̊a bølgelængder af litosfærens magnetfelt repræsenteret af en monopol
model fra aeromagnetiske data, mens de store bølgelængder og kernefeltet er estimeret ved brug af CHAOS-6
(Finlay et al., 2016a). Forskelle mellem model og brøndm̊alinger er indenfor de accepterede grænseværdier
af industrien. Modellen er ogs̊a sammenlignet med industriens standardmodel BGGM2016 og de tilsvarende
forskelle viser sig at være størst for de korte bølgelænger.

I afhandlingens sidste del bruges metoden til at modellere litosfærens magnetfelt ved at invertere b̊ade radiale
CHAMP målinger og feltstyrke data fra Nord Amerika. Den resulterende model og dens regionale power
spektrum er i god overensstemmelse med andre globale modeller som er baseret p̊a satellit og overflade
m̊alinger.

Afhandlingen viser at ækvivalente punkt kilder kan med fordel bruges for at modellere litosfærens globale
og regionale magnetfelt. Metoden har ingen restriktioner p̊a m̊alingernes fordeling, højde eller areal. I
tillæg kan kilderne bruges til at estimere lithosfærens vektorfelt i forskellige dybdelag, hvilket er en vigtig
forudsætning for at kunne anvende metoden til underjordisk navigering. De resulterende modelværdier kan
nemt omformes til kuglefunktioner.
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1 Introduction

The Earth has possessed a magnetic field for at least 3.2 Ga. It originates in the Earth’s core and reaches
out to several Earth’s radii where it meets the solar wind and its accompanying interplanetary magnetic
field. In that sense, the geomagnetic field defines a boundary between the Earth’s domain and outer space.
It was the historical work of William Gilbert (1544-1603) De Magnete which placed geomagnetism on the
scientific agenda in 1600. He was the first to enunciate that the shape of the geomagnetic field outwardly
is similar to that of a bar magnet: ”Magnum magnes ipse est globus terrestris”. In the previous 400 years
geomagnetism has been studied for mainly two reasons: its source was unknown and marine navigation.
Concerning the latter, compasses have been used extensively for navigation at sea since the 13th century.
The corresponding maps of declination have been crucial for the sailing nations of that time. Today, com-
passes have been replaced by radio- and satellite navigation systems. However, the need of magnetic field as
a navigational tool continues to live in the drilling industry. But also our current knowledge of the Earth’s
tectonic history and deep interior structure as well as present societal issues like the security of satellites and
electric power systems, and mineral exploration campaigns benefit from the science of geomagnetism.

The geomagnetic field can be measured both at or near the Earth’s surface using base stations, observatories,
aeromagnetic or marinemagnetic surveys, or from space using satellites. In both cases the measurements
comprise a superposition of different geomagnetic sources of internal and external origin. The internal
sources (originating below the Earth’s surface) are dominated by the main field which is generated from
current motions in the outer liquid core. Additional contributions are given by the magnetized rocks in the
lithosphere as well as fields generated by the movements of conducting seawater. Field signals from external
sources are based on the interaction between the Earth’s internal magnetic field and the solar wind. The cor-
responding current systems are initiated in the outermost part of the geomagnetic field, the magnetosphere,
which shields the planet against charged particles from the solar wind and cosmic radiation. Both internal
and external sources have overlapping spatial and temporal signatures, which makes it challenging to model
the individual source contributions. Improving knowledge of the geomagnetic sources, their mechanisms and
temporal-spatial behavior, as well as high quality satellite, near-surface and ground based measurements are
therefore crucial for the generation of realistic field models.

Below the subsurface, GPS (or other satellite/radio based navigation systems) cannot be used for navi-
gation. Instead, navigation can be based on three other references for orientation: the gravity field, the
geomagnetic field or the Earth’s rotation (using a gyro compass). For technical and economical reasons, the
present-day drilling industry uses a combination of the former two for directional wellbore surveying. Highly
accurate geomagnetic field models are thus important to minimize both the positional error ellipsis, economic
consequences, and the risk to hit existing pipeline systems and miss the original target. The accuracy of
geomagnetic models used for directional wellbore surveying improves distinctively with the implementation
of regional lithospheric field data from either marine or airborne surveys. This background initiated two
PhD projects which are co-financed by the Technical University of Denmark, ConocoPhillips, Lundin and
the Norwegian research council. The first project investigates a new modeling approach for estimating high
temporal fluctuations in the external field at polar regions (Aakjær et al., 2016). These geomagnetic signals
are a major error source for directional drilling at high latitudes. The second project, this thesis, focuses on
an alternative modeling scheme for global and regional lithospheric field models which is easy to implement
in the industry and may be used to improve navigational wellbore accuracy.

Based on the potential properties of the geomagnetic field and assuming a current-free region at the Earth’s
surface, the geomagnetic field can be expressed by the gradient of a scalar potential consisting of linear
combinations of spherical harmonics (SH). This mathematical representation was introduced by Carl Gauss
(1777–1855) in the 19th century and enables the geomagnetic source separation of internal and external origin.
SH are still widely used for global geomagnetic field models. However, the method has distinct disadvantages
for regional models of the magnetic field, especially the lithospheric field, which can be circumvented using
alternative mathematical approaches. The models derived for this thesis are for instance based on magnetic
monopoles as equivalent sources. The respective mathematical representation is convenient and simple to
implement into an inversion scheme. Chapter 2 gives the corresponding mathematical background and model
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inversion routine. Based on this routine, both global and local lithospheric field models are generated from
satellite and aeromagentic data, respectively. The corresponding results are presented in chapter 3 for the
global models, and chapter 4 for the local models. The latter also comprises a case study, comparing the
industry standard BGGM2016 model with an equivalent source based model for actual directional survey
measurements from a specific well within the Ekofisk field in the North Sea.
The final part of the thesis uses the equivalent source routine and combines satellite measurements and a
compiled aeromagnetic map for generating a high resolution lithospheric field model of North America. The
corresponding method and results can be found in chapter 5.
The thesis terminates with chapter 6, which summarizes and discusses the derived results.
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1.1 Geomagnetic field sources

The geomagnetic field B(r, t) measured at and near the Earth’s surface at time t and location r = (r, θ, φ)
is a superposition of several field contributions with a variety of spatial and temporal scales, as illustrated
in Fig. 1. These different field sources are commonly divided into internal sources, originating inside
the Earth, and external sources Bext(r, t) that are generated from current systems in the ionosphere and
magnetosphere. All sources are dynamic and thus vary with time, but an estimate of the external part of the
observed geomagnetic field is approximately 3%. The internal sources are dominated by convective motions
in the outer liquid core Bcore(r, t), representing about 95% of the observed geomagnetic field during quiet
conditions (i.e periods with low external activity). The remaining part is generated from magnetized rocks
in the lithosphere and motion-induced oceanic currents (by e.g. lunar tidal forces), as well as secondary
lithospheric and oceanic fields due to temporal changes of the external fields Blit(r, t) (Olsen et al., 2010a;
Thébault et al., 2010). The latter are sometimes classified as part of the external sources. Additionally
accounting for measurement errors ε(t), the observed geomagnetic field is given by

B(r, t) = Bcore(r, t) + Bext(r, t) + Blit(r, t) + ε(t). (1)

Knowledge of the different geomagnetic source contributions and their separation is crucial for our under-
standing of the geomagnetic field. This is in particular the case for the lithospheric part, as the respective
source signal is highly localized and overshadowed by other field contributions at satellite altitude. In-
sufficient removal of these contributions will mask the resulting lithospheric field models and reduce the
corresponding accuracy.

Figure 1 Different sources contributing to the near-Earth geomagnetic field. Credit: ESA/DTU Space
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1.1.1 Internal sources

Core field

The main part of the geomagnetic field originates in the outer core at a depth between 2900 and 5200 km
(Thébault et al., 2010). This part of the Earth consists mainly of iron and up to 10% nickel, liquified due to
the intense pressure and heat produced by long lived radioactive elements (Lowrie, 2007). It is believed that
the cooling of the outer core solidifies the inner core, leaving behind a less-dense fluid which causes convective
motions with typical velocities of a few tens of kilometers per year. The motion of the electrically conductive
matter in the geomagnetic field, together with the different rotation speeds of the outer and inner core,
generate electrical currents which maintain the geomagnetic field (Olsen et al., 2010a). This self-sustaining
dynamo produces a magnetic field which can be approximated by a geocentric dipole aligned along the spin
axis (Merrill and McFadden, 1999). Corresponding near-surface intensities range from 25,000 nT near the
equator to 65,000 nT near the poles (Olsen and Stolle, 2012).
Since the spatial small-scale features of the core field are masked by the lithospheric field, see Fig. 4, and
the temporal high frequency features are to some extent shielded by the conducting mantle (Olsen, 2002),
only part of the dynamo-generated field is observable at and above the Earth’s surface.
Variations in the outer core motions introduce temporal changes of the geomagnetic core field on timescales
of years to centuries. These slow changes are known as secular variation and have typical values of 40 nT/yr
(Thébault et al., 2010). But also sudden changes in the secular variation (so-called jerks) and geologically long
time variations which change the polarity of the core-field (reversals) have been observed in both sedimentary,
marine and volcanic magnetic rock material throughout the globe. The magnetic memory ability of these
rocks enables the lithosphere to record the historical changes of the core field. The investigation of these
paleomagnetic samples reveals that the Earth’s magnetic field and its dynamo have existed for at least 3.5 Ga
(Olson and Amit, 2006) and that the dipole part of the magnetic field has reversed its sign several hundred
times in the Earth’s history (Glatzmaier et al., 1999). The study of these polarity transitions is important
for understanding the mechanisms of the dynamo as well as the processes connecting the physics of the core
and mantle. Additionally, several studies have indicated a possible connection between the Earth’s reversal
pattern and changes in the biodiversity, the eccentricity of the Earth’s orbit, the ice ages, tectonic conditions,
sea surface temperatures as well as changes in the solar activity and cosmic radiations (Cox, 1969; Jacobs,
1994; Wendler, 2004).

Lithospheric field

The magnetic field of the Earth’s lithosphere, also denoted as an anomaly field, is masked by core field
and external field contributions, which have to be removed from the raw magnetic measurements prior to
lithospheric investigations. Since the magnetic signal below spherical harmonic (SH) degree 15 cannot be
separated from the core-field (see section 1.2), only lithospheric length scales smaller than 2500 km are re-
solvable (Thébault and Mandea-Alexandrescu, 2007).
The lithospheric field is characterized by a complex mixture of spatial diverse features with amplitudes rang-
ing from 0 to ±1000 nT (Thébault and Mandea-Alexandrescu, 2007). The diffuse field pattern is caused by
the lithospheric magnetic materials, mostly ferromagnetic minerals like magnetite, which become magnetized
when exposed to a magnetic field. Because magnetization is lost beyond mineral specific Curie temperatures,
the magnetic material responsible for the lithospheric signal is located above the Curie-isotherm (ca 580◦C)
which is commonly found in the upper part of the mantle at approximately 30 km depth below continents
and 6 km in the oceanic regions. Rocks responsible for the lithospheric signal carry two different types of
magnetization: induced and remanent. The former is only valid in the presence of an ambient field and
generates magnetic signatures which are proportional to the corresponding strength and direction. Induced
magnetization is most prominent in continental regions and contributes mainly to large-scale structures of
the lithospheric field. Remanent magnetization, on the other hand, is more pronounced on a local scale and
within oceanic basin rocks. This type of magnetization is acquired during rock formation and continues to
produce permanent magnetism in the absence of an inducing field. Since only rarely intense pressure forces,
temporal or chemical processes can alter remanent magnetization, important knowledge of the ancient main
field orientation is locked inside remanent magnetic samples.
The ratio between induced and remanent magnetization is rock dependent, making both the mineral com-
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position, their magnetic susceptibility, grain size, pressure forces and temperature important factors for the
amount of magnetization measured.
Since the lithosphere is about five times thicker below continents than oceans, magnetic field amplitudes are
typically lowest above oceanic regions.
The large-scale structures of the lithospheric field can be estimated using global measurements from satellites
which are corrected for external- and core field contributions by geomagnetic models. These structures reveal
information of the rock type variations in the lower crust (Thébault and Mandea-Alexandrescu, 2007). More
detailed and high-resolution models of the local anomaly field and information on the upper crust variations
cannot be revealed from satellite data as signals with short wavelengths attenuate more rapidly with alti-
tude than signals with long wavelengths (see equations (18) and (20)) (Thébault et al., 2010). This type
of information is based on regional magnetic measurements using either marine or aeromagnetic surveys.
The present study uses satellite and aeromagnetic data for the generation of global and regional lithospheric
field models, respectively. The reader is referred to Appendix A for an introduction to aeromagnetic data
processing routines.

Oceanic contributions

The movement of electrically conducting seawater relative to the Earth’s main field induces oceanic currents
and hence secondary magnetic fields (Tyler et al., 2003; Kuvshinov and Olsen, 2005). The poloidal part of
these fields (in the direction of the main field) is detectable at satellite altitude with typical field amplitudes
of a few nT, whereas the toroidal part (perpendicular to the main field direction) contributes up to 100 nT
at the Earth’s surface (Tyler et al., 2003). Despite the small geomagnetic contribution from oceanic tides,
separating the corresponding signals from the other internal sources will increase the accuracy of lithospheric
field models.

1.1.2 External sources

Geomagnetic external sources, with a time spectrum ranging between seconds and decades, are generated
by large-scale current systems in the magnetosphere and ionosphere as the result of a complex interaction
between the Earth’s internal magnetic field, the solar wind plasma, and the interplanetary magnetic field
(IMF) (Thébault et al., 2010). This interaction disturbs the general structure of the Earth’s magnetic field,
compressing the field lines at day-side and extending their length to several Earth radii at night-side. The
resulting outermost layer of the Earth’s magnetic field which sets the boundary to outer space is denoted
as magnetosphere, incorporating the magnetopause and magnetotail. Some of the charged particles from
the solar wind and cosmic radiation, which are generally shielded from the Earth’s magnetic field, are able
to enter the magnetosphere, especially when dayside magnetic reconnection is facilitated by a southward
directed IMF, and generate various current systems which result in geomagnetic signals between 1 nT during
quiet conditions and up to a few thousands of nT during magnetic active periods (Olsen and Stolle, 2012).
The most prominent magnetospheric current system is the geomagnetic ring current circulating along the
Earth’s magnetic equatorial plane. This large-scale current system contributes with a few tens of nT to the
surface Earth magnetic field during quiet conditions and several hundreds of nT during geomagnetic storms
(Thébault et al., 2010). Other noticeable currents within the magnetosphere are the cross-tail currents and
magnetopause currents.
Both reconnection on the dayside, enhanced magnetospheric convection and reconnection in the magnetotail
generate instabilities which can propagate through the magnetosphere in the form of waves. An impor-
tant wave mode that can carry such disturbances from the magnetosphere to the ionosphere is the shear
Alfvén wave, a transverse wave that travels along the magnetic field lines (Cramer, 2001). The field-aligned
currents (FAC), which link ionospheric and magnetospheric fields during magnetically disturbed times at
high latitudes, are set up by this type of waves (Lysak, 1990; Kan et al., 1991). FACs are associated with
rapid temporal and spatial fluctuations. The difficulty in predicting and modeling the corresponding field
contributions is a major error source for directional surveying in high latitude regions.
Another major constituent to magnetic disturbance fields at polar latitudes is represented by polar electro-
jets. The corresponding horizontal current sheets flow at approximately 110 km altitude along a closed oval
curve. The area of that curve is defined by the auroral oval during magnetically quiet periods, and expands
to lower latitudes during magnetically active periods.
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The ionosphere encompasses the uppermost layer of the atmosphere which is ionized by the short-wavelength
part of the solar radiation. At middle and low latitudes the ionospheric field contributions are dominated
by plasma motions originating from atmospheric heating at the day-side and cooling at the night-side for
altitudes between 90 and 150 km (E-region). The resulting currents are local time dependent and generate
solar quiet (Sq) signals at middle latitudes on the day-side. This diurnal system comprises of two vortices
in each sun-lit hemisphere, connected by the eastward equatorial electrojet (EEJ). EEJ is characterized by
intense electric currents flowing along the day-side magnetic equator. The electric currents located in the
higher altitude F-region (above 120 km) generate magnetic signals of generally lower amplitudes than within
the E-region. However, the corresponding signals are also detectable during local night-times (Olsen et al.,
2010a).
In order to reduce the effect of external field sources when modeling the internal fields, satellite data are
commonly selected for geomagnetic quiet periods as indicated from global activity indices like Dst or Kp, as
well as local night-times.

1.1.3 Source separation

In order to generate global lithospheric field models, all source contributions from non-lithospheric origin
have to be identified and removed from the measurements. Since both internal and external sources have
overlapping spatial and temporal signatures, separation is challenging and can only be achieved approxi-
mately using either a sequential or comprehensive modeling approach. Both methods are based upon the
spherical harmonic representation (Thébault et al., 2010).
The sequential technique models the individual sources separately using specific data selection, correction
and processing routines (Maus et al., 2008). The external field contributions are removed using along-track
filtering, a technique which may introduce artificial north-south directed features and east-west oscillations
in the resulting models (Thébault et al., 2010, 2017). MF7 (Maus, 2010) represents the latest CHAMP litho-
spheric field model estimated by sequential analysis. The model has a spatial resolution of approximately
300 km, resolving the lithospheric field up to spherical harmonic (SH) degree 133.
The overlapping spatial and temporal signatures of the geomagnetic sources generate erroneous signatures
in lithospheric field models based on the sequential technique. The comprehensive modeling approach (CM)
aims to circumvent these problems by modelling the core field, lithospheric field and prominent quiet-time
external fields simultaneously using both satellite (POGO, Magsat, Ørsted and CHAMP) and hourly obser-
vatory data (Sabaka et al., 2004, 2015; Sabaka and Olsen, 2006). Unlike the CM models, comprehensive-like
models like CHAOS (Olsen et al., 2006, 2009, 2010b, 2014; Finlay et al., 2015, 2016a) are based on potential
theory. The main focus of these models is the Earth’s core field, which results in more robust but lower
resolution lithospheric field models than the sequential counterpart (Thébault et al., 2010).
Both sequential and comprehensive methods are based on spherical harmonics and satellite measurements.
The corresponding distance between measurements and the lithospheric sources as well as the spatial data
resolution of approximately 350 km limit the lithospheric model resolution to about SH degree 130 (Thébault
et al., 2010). Higher resolution models demand both near-surface and high resolution measurements as pro-
vided by aeromagnetic or marine magnetic surveys. However, this cannot be achieved on a global basis
without varying data density and the introduction of synthetic data. The world digital magnetic anomaly
map (WDMAM) is an international attempt to produce high-resolution global lithospheric field maps based
on different regional magnetic surveys around the world (Dyment et al., 2015). As more surveys are pro-
duced with time and provided for scientific usage, the model is continuously updated. Typical challenges
of merging different types of regional surveys are the different survey times, altitudes, source corrections,
filtering routines, and missing documentation of performed data processing. The long wavelength signal is
usually filtered out and replaced by model values based on satellite measurements, while regions of missing
survey data are replaced with lithospheric magnetization predictions (Lesur et al., 2016). Figure 2 illustrates
the latest WDMAM generation with the corresponding grid altitude of 5 km above mean sea level.
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Figure 2 The latest version of the WDMAM is generated by compiling anomaly intensities seen by satellites, ships
and airplanes. Credit: http://www.wdmam.org/
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1.2 Geomagnetic field representation with spherical harmonics

Since the introduction of spherical harmonics (SH) by Carl Friedrich Gauss (1777-1855) in 1840, it has
been a classical mathematical procedure for the processing of potential vector and scalar field data. Within
geomagnetism, the method is typically used for global field models.
Spherical harmonics are functions defined on a sphere which can be approximated by a weighted sum over
orthogonal functions. For the two-dimensional case, the latter is often represented by Legendre functions
(or Legendre polynomials) Pn which are only dependent on co-latitude θ. They are a subset of the three-
dimensional associated Legendre functions Pn,m, also called ”spherical functions” or surface harmonics, of
degree n and order m. Associated Legendre functions are defined on the sphere and thus dependent on both
co-latitude and longitude. The corresponding Schmidt semi-normalized version is denoted as Pmn and ensures
that the magnitude of each coefficient reflects the relative importance with respect to the corresponding term
in the expansion (Blakely, 1996). Thus, the mean square value of 2n+1 Schmidt semi-normalized associated
Legendre functions of degree n is not unity but 1

2n+1 (Backus et al., 1996; Winch et al., 2005). Using
ν = cos θ it yields

Pn(ν) =
1

2nn!

( d
dν

)n
(ν − 1)n

Pn,m(ν) = sinm θ ·
( d
dν

)m
Pn(ν)

= (1− ν2)m/2
( d
dν

)m
Pn(ν)

Pmn (ν) =

 Pn,m(ν) = Pn(ν) for m = 0

Pn,m(ν)
[
2 (n−m)!

(n+m)!

] 1
2

for m > 0

(2)

For m = 0 the semi-normalized surface harmonics are only dependent on co-latitude (zonal harmonics),
whereas a pure longitudinal dependence is given for n−m = 0 (sectoral harmonics). If both of these terms
are larger than zero, the normalized surface harmonics are denoted as tesseral harmonics.
Other fundamental equations within geomagnetic potential field theory are the Maxwell’s equations (Backus
et al., 1996)

∇×E = −∂B

∂t
(3a)

∇ ·D = ρF (3b)

∇×H = JF +
∂D

∂t
(3c)

∇ ·B = 0 (3d)

for D = ε0E + P and H = B/µ0 −M. Here, ε0 = 1
c2µ0

≈ 8.854 · 10−12 As/Vm is the permittivity of free

space (with c ≈ 300 000 km/s being the speed of light in vacuum), µ0 = 4π10−7 Vs/Am is the magnetic
permeability of free space, H is the magnetic displacement vector [A/m], B the magnetic induction [gauss
or tesla (T), 1nT = 10−9T with 1T = 1V s−1m−2], D is the electric displacement vector [C/m2], JF is the
electric current density due to free charges [A/m2], E is the electric field [V/m], M is the magnetization per
unit volume [A/m], P is the electric polarization per unit volume [C/m2], and ρF is the charge density due
to free charges.
The representation of the geomagnetic field near the Earth’s surface builds on the assumption that the source
region is limited to a sphere of radius a (representing the mean Earth’s radius of 6371.2 km) whereas the
measurements are performed within a source-free region of radial boundaries a and b, see Fig. 3.
The atmosphere contains no magnetized particles and it can be assumed that no electric currents flow at
lower altitudes, which leads to both JF and M being zero for near-Earth regions. Additionally assuming
P = 0 transforms Ampére’s law of equation (3c) into ∇ × B = µ0ε0

∂E
∂t . Further, the quasi-stationary

assumption µ0ε0
∂E
∂t � ∇×B, meaning that the considered period is longer than the time it takes for light

to travel the distance of interest (Olsen and Finlay, 2012), leads to the approximation ∇×B = 0. Combined
with the Helmholtz’ theorem, the magnetic induction B can thus be represented as the negative gradient of
a scalar potential V ,
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b

a

Figure 3 Assumptions for the geomagnetic field representation. The source region is defined within a sphere of
radius a, whereas the geomagnetic field representation is valid for the spherical source-free region (gray area) between
radius a and b.

B(r, θ, φ) = −
(∂V
∂r

,
∂V

∂θ
,
∂V

∂φ

)
= −∇V

(4)

where θ and φ represent the geocentric co-latitude and eastern longitude, respectively.
The magnetic potential V is defined to solve the second-order partial differential equation ∇2V (r, θ, φ) = 0,
which is also known as ”Laplace’s equation”. The corresponding solution is given by a harmonic function if
the respective first derivatives are continuous and the second derivatives exist (Blakely, 1996). In spherical
coordinates, the Laplacian operator is defined as

∇2 ≡ 1

r2

∂

∂r

(
r2 ∂

∂r

)
+

1

r2 sin2 θ

∂2

∂φ2
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
. (5)

Applying spherical coordinates, the Laplace’s equation is conventionally solved via separation of variables
V = R(r)Θ(θ)Φ(φ). The resulting ordinary differential equations (ODE) are given as follows:

d

dr

(
r2 dR(r)

dr

)
− λR(r) = 0 (6a)

1

sin θ

d

dθ

(
sin θ

dΘ(θ)

dθ

)
− m2

sin2 θ
Θ(θ) + λΘ(θ) = 0 (6b)

d2Φ(φ)

dφ2
+m2Φ(φ) = 0. (6c)

Equation (6a) corresponds to the Euler class of ODE. Using the chain rule and performing a variable exchange
r = a · et the equation can be linearized into

d2R(t)

dt2
+
dR(t)

dt
− λR(t) = 0 (7)

with the respective roots being

r1 =
−1 +

√
1 + 4λ

2
, r2 =

−1−
√

1 + 4λ

2
. (8)

If 1 + 4λ = 0 the solution R(t) consists of the single roots r1 = r2 = −1/2 and the eigenvalue λ = −1/4.
Transforming the result back into radial dependence yields

R(r) = A

√
a

r
+B ln

( r
a

)√a

r
. (9)
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For eigenvalues λ 6= −1/4 and λ = n(n+ 1) the radial solution is given as

R(r) = A
( r
a

)n
+B

(a
r

)n+1

. (10)

The classical solution of equation (6b) is given by the Schmidt semi-normalized associated Legendre functions
of real degrees n and order of the polynomial m, Θ(θ) = Pmn (cos θ).
The solution of the differential equation (6c) comprises of two complex roots and is thus expressed as

Φ(φ) = A cos(mφ) +B sin(mφ). (11)

Combining all three variables, the potential V expands in terms of two infinite series, V = V i + V e, which
are based on internal source contributions (i, decreasing with increasing r) and external source contributions
(e, decreasing with decreasing r), respectively.

V (r, θ, φ, t) =
∞∑
n=1

n∑
m=0

(a
r

)n+1[
Rmn (θ, φ) + Smn (θ, φ)]

+
∞∑
n=1

n∑
m=0

( r
a

)n[
Rmn (θ, φ) + Smn (θ, φ)],

(12)

where Rmn and Smn represent the Schmidt semi-normalized surface spherical harmonics

Rmn (θ, φ) =

{
R0
n(θ, φ) = Rn0(θ, φ) for m = 0

Pmn (cos θ) cos(mφ) =
√

2 (n−m)!
(n+m)!Rnm(θ, φ) for m > 0

(13)

Smn (θ, φ) =

{
0 for m = 0

Pmn (cos θ) sin(mφ) =
√

2 (n−m)!
(n+m)!Snm(θ, φ) for m > 0

(14)

and Rnm and Snm the corresponding un-normalized versions

Rnm(θ, φ) = Pn,m(cos θ) (15)

Snm(θ, φ) = Pn,m(cos θ). (16)

Note that the equation (12) is only valid for λ 6= −1/4.
Equation (12) is often given relative to a reference sphere of radius a = 6371.2 km (mean Earth radius) and
by means of the Schmidt semi-normalized associated Legendre functions,

V (r, θ, φ, t) = a
∞∑
n=1

n∑
m=0

(a
r

)n+1[
gm,in (t) cos(mφ) + hm,in (t) sin(mφ)

]
Pmn (cos θ)

+ a
∞∑
n=1

n∑
m=0

( r
a

)n[
gm,en (t) cos(mφ) + hm,en (t) sin(mφ)

]
Pmn (cos θ)

(17)

with [gm,in , hm,in ] and [gm,en , hm,en ] being the time dependent Gauss coefficients for the internal and external
sources, respectively. The additional scaling factor a in equation (17) ensures that the Gauss coefficients
have the same dimensions as the magnetic induction (tesla, gauss or nT).
Depending on the given data quality and model capabilities, the infinite sum of the magnetic scalar potential
has in practice a limit of nmax, resulting in nmax(nmax + 2) Gauss coefficients. Increasing nmax enables the
spherical harmonics to capture smaller frequencies (more small-scale structures) of the potential field.

11



Geomagnetic power spectrum

Modeling the geomagnetic field by means of spherical harmonics allows the separation into internal and
external field contributions with respect to a given radius r (equation 17), upward- and downward continua-
tion, spatial and temporal model resolution as well as spectral analysis (Thébault et al., 2010). The latter is
given by the spatial power spectrum Rn [given in nT2], also denoted as Mauersberger–Lowes spherical har-
monic power spectrum (Mauersberger, 1956; Lowes, 1974), which estimates the contribution to the squared
magnetic internal field amplitude for a given SH degree n (Thébault et al., 2010),

Rn =
(a
r

)2n+4

(n+ 1)
n∑

m=0

[
(gmn )2 + (hmn )2

]
. (18)

Thus, summing over the spectrum for all SH degrees gives the mean-squared internal magnetic field intensity
averaged over a sphere of radius r (Backus et al., 1996, p. 147),

〈|B|2〉 =
∞∑
n=1

Rn. (19)

The horizontal wavelength λn for a given SH degree n is given by (Backus et al., 1996, p. 103)

λn =
2πr√
n(n+ 1)

. (20)

Figure 4 shows the spectrum at the Earth’s surface (r = a in equation (18)) based on the Gauss coefficients
of CHAOS-6. The prominent break in the spectrum around SH degree 15 (black dashed line) is commonly
explained by the assumption that the long wavelength field contributions for 1 ≤ n ≤ 12 originate mainly in
the core, while the short wavelength features for 16 ≤ n are dominated by lithospheric signals. The exact
transition between these two contributions is unknown, and it is very likely that core- and lithospheric field
signals overlap each other in an intermediate range of approximately 13 ≤ n ≤ 15 (Backus et al., 1996;
Langel and Hinze, 1998). Within this shared spectral domain it is impossible to distinguish the two sources
from each other. The transition degree used for the generation of synthetic data in this thesis is 15.
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1.3 Alternatives to spherical harmonics

The method of spherical harmonics is characterized by global basis functions and hence dependent on global
distributed data. As a consequence, the smallest spatial wavelength in the data set dictates the maximum
degree for spherical harmonic series (Purucker and Whaler, 2007). Satellites provide globally distributed
data at an expense of low resolution compared to near-surface measurements. However, lithospheric field
models are in need of data both close to the sources and with a high degree of spatial density. Regional
airborne or marine magnetic measurements fulfill these criteria. Since SH cannot account for data sets of
varying spatial density or data sets covering only a regional portion of the Earth, a different mathematical
approach is needed for the processing of regional potential field measurements. Alternatively, data interpo-
lation and the introduction of synthetic data are necessary to accommodate the SH requirement of global
and evenly distributed data coverage (Schott and Thébault, 2011).
Another disadvantage of SH, concerning both global and regional lithospheric field models, is the truncation
of SH expansions. Due to computational limits, spherical harmonic series are not infinite but extended up
to a certain degree. This introduces power leakage from higher into lower SH degrees, also known as Gibbs
phenomenon, and affects all SH coefficients, causing undesirable oscillations over the entire sphere. Thus,
regions of high observational density cannot be represented by truncated spherical harmonics without the
introduction of artificial features in regions of sparse observations (Hodder, 1982).
Based on the SH drawbacks for lithospheric field modeling and the analysis of high resolution regional
magnetic measurements at different altitudes, alternative techniques have been developed during the past
decades (Purucker and Whaler, 2007).
Examples for methods which, similar to SH, are based on a global support on the sphere are localized spheri-
cal functions like spherical harmonic splines (HS) and wavelets (Chambodut et al., 2005; Holschneider et al.,
2003). The former consist of polynomial functions defined on intervals, thus circumventing SH expansion
truncation. The method was introduced by Shure et al. (1982) for global main field models at the core
surface (Purucker and Whaler, 2007). A main disadvantage of the harmonic spline expansion is that it is
based on one spline function for each observation location, demanding an enormous computational effort
to solve the resultant systems of linear equations. Parker and Shure (1982) presented the depleted basis
harmonic splines, an alternate version which only uses a data subset (Purucker and Whaler, 2007).
Another widely used approach for the representation of regional lithospheric field data using global base
functions are wavelets (Schott and Thébault, 2011). The method has a history within different scientific
genres, e.g. medical signal processing, geophysics and finance (Chambodut et al., 2005), and is characterized
by representing the magnetic field only within the area corresponding to the used data set (Schott and
Thébault, 2011).

SH alternatives can either be based on functions with global support, like HS and wavelets, or on functions
with local support. The latter is especially useful when data is only given on a regional scale. Spherical
Cap Harmonic Analysis (SCHA) introduced by Haines (1985), its revised version R-SCHA and equivalent
potential field sources are examples for regional methods with local support. A major difference between
these methods and SH lies in the fact that the functions corresponding to the former only have non-zero
values for regions where data exist.
The revised spherical cap harmonic analysis (R-SCHA) is a modeling technique for potential fields at regional
scale (Thébault et al., 2004, 2006b,a; Thébault, 2006). The method is based on multilevel measurements of
e.g. repeat stations, observatories, airborne data or satellite data. The related approach R-SCHA2D is valid
when data is available at one surface only (Thébault, 2008).

Building on the work of Hammer (2011), this thesis uses a series of magnetic equivalent potential field
sources (monopoles) at a certain depth below the Earth’s surface for the generation of both regional, global
and combined regional-global lithospheric field models. The method is able to utilize all three components
of the vector field data and/or measured scalar data. The procedure is to relate satellite and/or airborne
magnetic measurements to a set of monopoles by least squares matrix inversion, with the source distribution
being dependent on both the density and altitude of the used data. Similar to SCHA and R-SCHA, the
monopole procedure is applicable for both regional data and data with different altitudes while satisfying
the constraints of potential field theory (Schott and Thébault, 2011). But unlike the former two methods,
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the study region for equivalent potential field sources can have any shape.
The history of the use of monopoles to model features of the geomagnetic field reaches back at least 60 years.
The first application was possibly provided by Serson and Hannaford (1957) who used a random arrangement
of magnetic monopoles as a tool for determining the source depth of magnetic anomalies observed with a
three-component airborne magnetometer over Western Canada and the Atlantic Ocean east of Bermuda.
Later McLeod and Coleman (1980) generated statistical models of randomly distributed magnetic monopoles
in order to predict the great circle power spectrum for both the core and the lithospheric field in agreement
with observations made by the POGO spacecraft.
Another monopole-based lithospheric field model from POGO satellite data was derived by Von Frese et al.
(1981). Building on this work, von Frese et al. (1988) made another effort seeking to better exploit computer
resources for geomagnetic field modeling. They used the monopole representation together with damped
least-squares in combination with bootstrap inversion for processing Magsat magnetic anomaly data over
India.
Models of the geomagnetic secular variation are based on the global network of observatory data which is
known to be more dense in the Northern Hemisphere than in the Southern Hemisphere. Since SH are not
capable of easily handling spatial differences in data density, Hodder (1982) used a mesh of monopoles for
geomagnetic secular variation field modeling. Each of the 80 sources was located below a given observatory
below the core-mantle-boundary and, similar to the approach of this thesis, the author ensured a zero net
flux and transformed the derived source values into spherical harmonics. The model results were in good
agreement with the observations, demonstrating that the monopole approach is a useful alternative to spher-
ical harmonics.
Another important contribution for the validation of using equivalent potential field sources for geomagnetic
field modeling was provided by O’Brien and Parker (1994). Based on a regularized inversion of monopoles,
the authors generated both global radial core field models and regional lithospheric field models which were
in good agreement with previous results based on harmonic splines and SCHA.
Finlay et al. (2016b) presented a recent new application of monopole modeling. Using two global monopole
grids at different altitudes and minimizing the L1-norm of the radial field separately on the core-mantle-
boundary and the Earth’s surface, the authors proposed a possible method for separating the magnetic
signals from the core and the lithosphere. It is also interesting to mention that the equivalent potential field
sources method can be used to investigate the magnetic fields of other members of our solar system than
the Earth, for instance the Moon (Toyoshima et al., 2008). Like many mathematical tools in geomagnetism,
equivalent sources are also widely used for the processing of geodetic data (Dampney, 1969).

Before giving a detailed description of the used mathematical routine in chapter 2, the following section gives
a short introduction to how geomagnetic field models are used for subsurface navigation of wellbores.
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1.4 Directional wellbore surveying using the geomagnetic field

This section investigates directional wellbore surveying and focuses mainly on its application of the magnetic
field for navigation. The presented magnetic surveying technique is one of several methods for orientation
of subsurface devices. Alternatives, which will not be discussed in this thesis, are given by gyro surveying
and ultrasound surveying.
Directional drilling is a major discipline within the oil industry and refers to the drilling of wells containing
both vertical and curved sections. Thanks to the flexibility of the drill-string, the drill-bit can be forced to
change direction, which enables drilling in any direction, including horizontal. The advantage is obvious, a
single fixed drill site can be used to reach targets with horizontal distances more than 10 km from the drill
site. Wellbores with multiple branches are another valuable feature made possible by directional drilling.
A well documented geometrical description of a wellbore is critical for several reasons. When drilling a well
with known positional uncertainty, it is easier to hit predefined geological targets and avoid faults and offset
wells.
Directional drilling requires a means for navigation in order to ensure that a wellbore follows a predefined
well-path. In addition to the distance along the well, we need references to determine the direction at any
point. The direction of gravity serves as the vertical reference, while the geomagnetic field or a north seeking
gyro are the options for the horizontal reference. Both are in use, but for technical and economical reasons
the magnetic field is presently the one preferred by the industry.
There are two main drilling technologies in use today: downhole drilling motors (mud motors) and rotary
steerable system (RSS). The former is driven by drilling fluid circulated from the rig down to the drillstring.
While most of the drillpipe is held stationary when using a conventional mud motor, the pipe is continuously
rotating with a RSS. It is also possible to combine the two systems. Concerning mud motors, the drillstring
is typically built up of three section: bottom hole assembly (BHA that includes a motor), transition pipe
and drillpipe. The former contains tools for both orientation, steering and drilling, see Fig. 5.
The geomagnetic and gravity fields are measured by a directional instrument within the BHA and compared
to model predictions. Regarding the predictions of the geomagnetic field these models are typically valid
for the large-scale structures of the Earth’s magnetic field during quiet conditions. Further model enhance-
ment on a local basis requires In-Field Referencing (IFR) and Interpolation In-Field Referencing (IIFR),
which account for the short-wavelength lithospheric field and rapid temporal variations of the external field,
respectively. Section 1.4.1 presents the most common magnetic field models applied in wellbore surveying
and section 1.4.3 gives an overview of some of the most common error sources to magnetic directional sur-
veying. Methods for determining the magnetic field at the wellbore vicinity are presented in section 1.4.2.
A path correction requires an accurate determination of the wellbore orientation in space. Examples for
corresponding techniques are also given in section 1.4.2. An actual case study, comparing the industry stan-
dard BGGM2016 model (including IFR) with an equivalent source based model for actual directional survey
measurements from a specific well within the Ekofisk field in the North Sea is given in chapter 4.5.

Figure 5 Typical components in a mud motor BHA applied for the orientation and steering of wellbores (Allen et al.,
1997).

Note that this section only provides a brief introduction to the complex topic of directional surveying. There
exist a vast amount of literature on the subject and the interested reader is referred to e.g. Inglis (2013);
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Halliburton (2001); Jamieson et al. (2016); Beggan et al. (2014) for extensive descriptions.

1.4.1 Magnetic field models used in directional drilling

Due to several error sources in the viscinity of a well (see section 1.4.3), the BHA measurements of the
magnetic field used for subsurface navigation need to be quality controlled and verified. The downhole
observations are compared to model predictions to ensure that the wellbore is on the right track for the
predefined target. These models are generated for the individual well, giving predictions of the total field
intensity and magnetic inclination (also denoted as ”dip angle”) for the different well sections. The differences
between BHA measurements and model predictions have to be within certain limits which are defined by
the individual drilling companies or operators.
The oil industry uses typically the International Geomagnetic Reference Field (IGRF) models, the British
Geological Survey Global Geomagnetic Model (BGGM) or the High Definition Geomagnetic Model (HDGM).
All models are based on spherical harmonics and provide estimations of the long wavelength effects of the
Earth’s magnetic field and to some extend the contributions from external field variations and localized
lithospheric field signals.

IGRF and DGRF

The IGRF provides a model estimation of the large-scale internal geomagnetic field near and above the
Earth’s surface (Macmillan and Finlay, 2011). Rapid temporal variations in the external field as well as
small-scale lithospheric field contributions are thereby not represented. Due to secular variation, the model
has been updated regularly since 1969 with each generation comprising of three parts: a) the non-definitive
IGRF which represents the main field on a 5-year interval, assuming a linear time dependence of the Gauss
coefficients for each interval; b) a predictive model for the temporal changes of the main field, extending the
time-span of the IGRF with further five years; c) The definitive version of the previous IGRF, except for the
last 5-year predictions based on secular variation models, (DGRF) which will not be altered further in future
revisions. Thus, each DGRF model is definitive for five more years than the previous DGRF generation
(Thébault et al., 2015).
Each IGRF generation is a combination of certain candidate models provided by different institutions around
the globe. Both the individual candidate models as well as the evaluation of the final IGRF version, derived
from an international team of scientists, are well documented and freely accessible to the user.
The IGRF can be represented by a set of spherical harmonics similar to equation (17), however with a finite
sum extending up to degree nmax:

V (r, θ, φ) = a

nmax∑
n=1

n∑
m=0

(a
r

)n+1[
gmn cos(mφ) + hmn sin(mφ)

]
Pmn (θ). (21)

The Gauss coefficients of the latest IGRF version, IGRF-12, are derived for nmax = 10 for the period 1900
- 2000 and hereafter up to SH degree 13 (Thébault et al., 2015). The secular variation predictions are valid
for the period 2015-2020 and the corresponding temporal variations of the Gauss coefficients are given up to
SH degree and order 8.
Unlike BGGM and HDGM, IGRF models are named after the corresponding generation and not the year of
release.

BGGM

Similar to IGRF models, BGGM are global geomagnetic models which contain a retrospective part and a
predictive part. The former is based on measurements from satellites, observatories and repeat stations, while
the future field predictions are given by models of the secular variation and secular acceleration (BGS, 2016;
Beggan et al., 2014; Hamilton et al., 2015). Also the large-scale external field contributions are incorporated
to some extent in the model predictions. BGS models are updated every year. The latest version BGGM-
2016 represents the internal fields up to SH degree 133, corresponding to a spatial half wavelength of approx.
150 km, and the parametrization of both external fields and induced fields are given up to SH degree 1
(Macmillan and Grindrod, 2010; Hamilton et al., 2015).
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HDGM

The High Definition Geomagnetic Model (HDGM) has been generated by a joint project from the drilling
industry and the U.S. National Geophysical Data Center (NGDC) (NOAA, 2016). Like the models from
the British Geological Service, HDGMs are updated on an annual basis and account for the latest mea-
surements from both satellite and near-surface (marine magnetic and aeromagnetic) surveys (Maus et al.,
2012). The latter enables models of much higher SH degrees than provided by IGRF or BGGM, resulting
in high-resolution predictions for the internal geomagnetic field. Additional real-time magnetospheric field
predictions are given in the extended model version HDGM-RT.
The most recent model HDGM-2016 resolves the internal field up to degree and order 720, corresponding to
a spatial half wavelength of approx. 30 km, and the secular variation up to degree and order 15. Similar to
BGGM-2016, the external fields and corresponding time variations are given to degree and order 1 (Maus
et al., 2012).

1.4.2 Measurement while drilling

Positional estimates of a wellbore during drilling are based on local gravity (G) and magnetic field (B)
measurements from the ”measurement while drilling” (MWD) directional tool, see Fig. 5. The directional
sensors are built into a non-magnetic drill collar with three orthogonal oriented accelerometers and mag-
netometers, as well as a data recovery device (Jamieson et al., 2016). The accelerometers are applied for
the derivation of local wellbore inclination, whereas both gravity and magnetic measurement are needed for
wellbore azimuth and toolface calculations.
The wellbore inclination Υ represents the angle between the local vertical and the tangent to the wellbore
axis. A horizontal well is thus represented by an inclination of 90◦, while drilling straight down gives an
inclination of 0◦.
The wellbore azimuth Λ is given by the angle between the horizontal component of the wellbore direction and
a reference (magnetic north, true north or grid north). Applying magnetic north as reference, the wellbore
azimuth is 0◦ and 90◦ when drilling towards magnetic north and east, respectively.
Considering the z-axis of both accelerometers and magnetometers pointing down hole, wellbore inclination
and azimuth are defined as follows,

Υ = cos−1 Gz√
G2
x +G2

y +G2
z

Λ = tan−1

√
G2
x +G2

y +G2
z(GxBy −GyBx)

Bz(G2
x +G2

y)−Gz(GxBx −GyBy)
.

(22)

The most dominant magnetic MWD errors for wellbore azimuth are due to drillstring interference (see sec-
tion 1.4.3) and errors in magnetic declination (Edvardsen et al., 2014).
Except from error sources in the gravity and magnetic measurements, the three orthogonal accelerometers
ensure the definition of vertical down and the three orthogonal magnetometers together with the accelerom-
eters give the orientation of magnetic north.
The MWD tools perform gravity and magnetic field measurements at several along-hole depth locations,
usually at every ”stand” which is about 30 m or 40 m, dependent on the drilling rig. The respective magnetic
field declination, inclination and intensity values are compared with magnetic field predictions as described
in section 1.4.1. Note that the magnetic inclination Υmag used for model comparisons is different from the
wellbore inclination,

Υmag = sin−1 GxBx +GyBy +GzBz√
G2
x +G2

y +G2
z

√
B2
x +B2

y +B2
z

. (23)
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Determining survey positions

In order to compare the measured magnetic inclination and field intensity values with model predictions, it
is crucial to know the location of the measurements. The drilling industry makes use of different techniques
for estimating the well-bore position in space. An interesting overview over existing methods is given by
Jamieson et al. (2016).
It is important to determine the wellbore location as accurate as possible, as systematic prediction errors
accumulate along the well path which can lead to the final well location being far away from the originally
planned target.
The tangential method is the easiest and least accurate technique to estimate the wellbore orientation. It
simply assumes that the wellbore follows a straight line between two adjacent measurement points, neglecting
any change in wellbore inclination and direction. The minimum curvature method, on the other hand, takes
also a curved well-path into account and allows for changes within both inclination and azimuth. The method
provides the most accurate predictions of the wellbore position and corresponds to the industry standard
today.
The wellbore inclination and azimuth are measured continuously during drilling. The corresponding values
for two adjacent measurement points are denoted Υ1, Υ2, Λ1 and Λ2, respectively. The minimum curvature
method uses these values to fit a spherical arc between the measurement points by determining the so-called
”dog-leg” angle β,

β = cos−1[cos(Υ2 −Υ1)− sin(Υ1) sin(Υ2)(1− cos(Λ2 − Λ1))]. (24)

Using Ψ = 2
β tan(β2 ), the change in true vertical depth (TVD) as well as the horizontal location with respect

to grid North and East between the two points can now be determined to

∆TVD =
Ψδ

2
· (cos(Υ1) + cos(Υ2))

∆N =
Ψδ

2
· (sin(Υ1) cos(Λ1) + sin(Υ2) cos(Λ2))

∆E =
Ψδ

2
· (sin(Υ1) sin(Λ1) + sin(Υ2) sin(Λ2))

(25)

where δ represents the measured depth difference between the two points, see Fig. 6.

N

Z

E

∆E
δ

∆N∆TVD

Figure 6 Two adjacent measurement points in a north-east-vertical down coordinate system. The minimum curvature
method uses the corresponding inclination and azimuth measurements for determining the horizonal and vertical
differences between the two points.
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1.4.3 Improving MWD positioning

Magnetic MWD measurements have two main error sources: the highly localized structure of the lithospheric
field (which is accounted for using IFR) and drillstring interferences. However, other error sources exist
and require different techniques for reducing the corresponding impact on wellbore positioning. A brief
introduction to some of these errors and techniques is given in the following.

In-field referencing

The geomagnetic parameters used in wellbore directional surveying are often obtained from global geomag-
netic field models (Edvardsen et al., 2013). Uncertainties in these models give rise to navigational errors,
which can be reduced by further implementation of local geomagnetic field models of the drilling area.
This technique is referred to as ”in-field referencing” (IFR), and based on aeromagnetic, marine magnetic
and/or on-shore magnetic measurements. Interpolated in-field referencing (IIFR) takes additionally the di-
urnal magnetic field variations into account. Due to the increase of magnetic field disturbances towards
polar regions, high accuracy MWD is crucial for directional drilling applications at especially high latitudes
(Jamieson et al., 2016).
IFR results in crustal corrections of the reference field inclination, declination and intensity. For instance,
the uncertainty in magnetic declination can be reduced with approximately 40% at 1σ when applying IFR
to a MWD survey (Jamieson et al., 2016).

Multi-station analysis

Multi-station analysis (MSA) is a technique to validate and improve MWD wellbore directional survey quality
and accuracy. The method estimates the consistency between theoretical data and actual magnetic data by
using directional sensor measurements several survey stations along the wellbore. A collection of respective
formulae is given in chapter 14 in Jamieson et al. (2016).
MSA can be used for magnetic interference and misalignment corrections to magnetic directional surveys.

Magnetic interference

Even if the BHA magnetometers are housed within a non-magnetic drill collar, accumulated disturbances
from several surrounding magnetic interference sources (e.g. drillstring, adjacent wells, casing and mag-
netic formations) may affect the magnetometer measurements (Cheatham et al., 1992). Since the wellbore
inclination is independent of the local magnetic field measurements, only the wellbore azimuth is affected
by magnetic interference. Magnetic interference from drillstring may sometimes be corrected for using a
correction algorithm, or accepted as an error source to the azimuth reading. If correction is applied the az-
imuth is often called ”corrected azimuth” and if not ”uncorrected azimuth”. When correcting for drillstring
interference, the corresponding calculations are dependent on both magnetic field intensity and inclination.
Errors in these values will automatically lead to uncertainties in the corrected wellbore azimuth. This is one
reason to why the uncorrected azimuth is preferred in some situations (Edvardsen et al., 2014).
The dominant error source to uncorrected azimuth is drill string interference and can be reduced by in-
creasing the amount of non-magnetic steel in the BHA and/or placing the magnetic measurement devices at
certain distances from magnetic BHA material (Edvardsen et al., 2014). For instance, Statoil demands that
20 m behind and 8 m in front of the magnetic measurement device need to consist of non-magnetic material
when using uncorrected azimuth (Inge Edvardsen, pers.comm., March 2017).

Magnetic drilling fluid

While drilling, the drill bit is cooled by drilling fluid, which is continuously pumped into and out of the
bore hole. This drilling fluid (or mud) has magnetic properties which may affect the MWD sensor readings
by reducing the amplitude of cross-axial (transverse to the wellbore direction) magnetometer measurement.
Resulting distortions in wellbore azimuth and positioning can reach up to 5 ◦ and 50 m, respectively (Tork-
ildsen et al., 2004). The negative effects of magnetic drilling fluid can be circumvented by either using a
gyroscope for determining the wellbore azimuth or applying MSA to analyze and make corrections of the
magnetic survey data (Torkildsen et al., 2004).
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Misalignment

A significant error source in wellbore directional surveying is misalignment. The part of the drill collar where
the directional sensors are placed can be misaligned with respect to the actual drilled hole or there can be
a misalignment between the drill collar and the directional sensors. The corresponding uncertainties are
important for the determination of the hole axis direction and wellbore direction.

Sag

The flexible design of the BHAs has the consequence that the MWD drill collar can be deflected under
gravity and borehole curvature. This leads to BHA sag, which is a misalignment of the drill collar and
its directional sensors with the borehole direction. This effect is handled by sag correcting the inclinations
using special designed softwares. Corresponding values are mainly dependent on the sine of the wellbore
inclination, the BHA type and geometry, sensor spacing, build-up rate and hole size (Jamieson et al., 2016).

Error ellipse

In MWD positioning there are both random and systematic error sources. Along the well path, the former
type of errors will cancel out if the directional surveys are taken at different toolfaces. Systematic errors,
on the other hand, propagate along the computed wellbore trajectory and are quantified and collected in a
three-dimensional uncertainty ellipse with the long axis perpendicular to the wellbore direction.
The shape of the error ellipse represents the assumption that azimuth errors are larger than inclination
errors, since the ellipse’s lateral, high side and wellbore axis dimensions are proportional to the wellbore
azimuth error, the wellbore inclination error, and the depth error, respectively (Jamieson et al., 2016), see
Fig. 7.

In order to keep track on the constant development of subsurface navigational improvements, the Industry
Steering Committee on Wellbore Survey Accuracy (ISCWSA) produces and maintains industry standards
related to wellbore-survey accuracy since 1995. The corresponding standards for the different error sources
are used to decrease the uncertainty of well positions which is crucial for collision risk with existing wellbores,
target sizing, and log positional accuracy (Jamieson et al., 2016; Macmillan and Grindrod, 2010; Williamson
et al., 2000).

Figure 7 3D error el-
lipse with corresponding
dimensions being defined
by the wellbore azimuth
error (lateral dimension),
wellbore inclination error
(high-side dimension) and
vertical error (wellbore
axis dimension). Source:
https://www.spe.org/en/

jpt/jpt-article-detail/

?art=968
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2 Methodology of equivalent point sources

The equivalent point source technique is based on a discrete amount of sources placed at an arbitrary depth
below the observations. It is required that the corresponding potential field both reproduces the observations
to an adequate level of misfit, is harmonic in the area of interest, and vanishes when upward continuing to
large distances from the observations (Blakely, 1996). In this thesis equivalent point sources will also be
denoted as monopoles, equivalent potential field sources and sources.

The remaining part of this chapter outlines the mathematical background for the equivalent point source
method of this thesis. Sections 2.3 to 2.9 explain the inversion scheme used to derive the global and regional
lithospheric field models which are presented in chapter 3 and 4, respectively.

2.1 Equivalent point source formulation

Neglecting currents in the ionosphere and adopting the quasi-stationary approximation, the magnetic vector
field A(ri) at locations ri = [ri, θi, φi] (for i = 1, ..., N) above the Earth’s surface can be described by the
scalar potential Φ(ri),

A(ri) = −∇Φ(ri). (26)

This potential can be modeled as a linear combination of K globally distributed equivalent potential field
sources (monopoles) located at sk = [rk, θk, φk] and with source strength qk (for k = 1, ...,K) (O’Brien and
Parker, 1994)

Φ(ri) =
K∑
k=1

qk
r2
k

rik
(27)

where rik and µik are the distance and angle between the position vectors of the location of interest i and
source k, respectively (see Fig. 8):

rik = |ri − sk|

=
√
r2
i + r2

k − 2rirk cos(µik)

cos(µik) = cos(θi) cos(θk) + sin(θi) sin(θk) cos(φi − φk).

(28)

The squared source radius in equation (27) ensures that the source strength is given in nT.
It is noteworthy that the potential due to equivalent point sources decreases with 1

rik
rather than 1

r2ik
for

equivalent dipole sources.
Combining equations (26) and (27) gives

A(ri) = −
K∑
k=1

qkêi · ∇
r2
k

rik

=
K∑
k=1

qkgik

= Gq

(29)

where êi represents the unit vector, q is a vector of source amplitudes and G is an N ×K Green’s matrix
with elements gik that are directional derivatives of source k evaluated at the location and measurement
direction i,

gik = −êi · ∇
r2
k

rik
. (30)
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The corresponding formulae for the directions r, θ, φ are

grik = − ∂

∂ri

( r2
k

rik

)
=

r2
k

r3
ik

[ri − rk cos(µik)]

gθik = − 1

ri

∂

∂θi

( r2
k

rik

)
=

r3
k

r3
ik

[sin(θi) cos(θk)− cos(θi) sin(θk) cos(φi − φk)]

gφik = − 1

ri sin(θi)

∂

∂φi

( r2
k

rik

)
=

r3
k

r3
ik

[sin(θk) sin(φi − φk)].

(31)

The respective derivations are given in Appendix B.

µik

k

i

rik

sk

ri

Figure 8 2D illustration of the equivalent point source potential field formulation. The origo represents the center
of the Earth.

2.2 Transformation from equivalent point source values to Gauss coefficients

One advantage of the equivalent point source method is that the source values can be transformed into
spherical harmonic Gauss coefficients, which facilitates straight-forward comparisons between equivalent
source models and SH based models like CM5, MF7 and CHAOS-6.
Following Blakely (1996, p. 119), the spatial distance between source and data for rk < ri can be written as

1

rik
= [r2

i + r2
k − 2rirk cos(µik)]−1/2

=
1

ri
[1 +

(rk
ri

)2 − 2
rk
ri

cos(µik)]−1/2
(32)

and expanded in a binominal series

1

rik
=

1

ri

[
1− 1

2

(r2
k

r2
i

− 2
rk
ri

cos(µik)
)

+
(− 1

2 )(− 3
2 )

2!

(r2
k

r2
i

− 2
rk
ri

cos(µik)
)2

+
(− 1

2 )(− 3
2 )(− 5

2 )

3!

(r2
k

r2
i

− 2
rk
ri

cos(µik)
)3

+ ...
]
.

(33)
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Rearranging the above equation into terms of rk
ri

leads to a function of Legendre polynomials Pn(cos(µik))
of degree n,

1

rik
=

1

ri

[
1 +

(rk
ri

)
cos(µik) +

(rk
ri

)2(
− 1

2
+

3

2
cos(µik)2

)
+ ...(rk

ri

)3(
− 3

2
cos(µik) +

5

2
cos(µik)3

)
+ ...

]
=

1

ri

∞∑
n=0

(rk
ri

)n
Pn(cos(µik))

(34)

for

Pn(cos(µik)) =
1

n!2n
dn

d(cos(µik))n
(

cos(µik)2 − 1
)n
. (35)

Using the decomposition formula from Torge (2001),

Pn(cosµik) =Pn(cos θi)Pn(cos θk) + ...

2
n∑

m=1

(n−m)!

(n+m)!

[
Rnm(θi, φi)Rnm(θk, φk) + Snm(θi, φi)Snm(θk, φk)

]
,

(36)

and employing Schmidt-semi-normalization of the surface spherical harmonics Rnm and Snm (see equations
(13) and (14)) gives the Schmidt-normalized version of equation (36) (Blakely, 1996),

Pn(cosµik) = Pn(cos θi)Pn(cos θk) + ...

2
n∑

m=1

(n−m)!

(n+m)!

1

2 (n−m)!
(n+m)!

[
Rmn (θi, φi)R

m
n (θk, φk) + Smn (θi, φi)S

m
n (θk, φk)

]
= Pn(cos θi)Pn(cos θk) +

n∑
m=1

[
Rmn (θi, φi)R

m
n (θk, φk) + Smn (θi, φi)S

m
n (θk, φk)

]
=

n∑
m=0

[
Rmn (θi, φi)R

m
n (θk, φk) + Smn (θi, φi)S

m
n (θk, φk)

]
=

n∑
m=0

Pmn (cos θi)P
m
n (cos θk) cos(mφi −mφk). (37)

Note that the last two lines include m = 0 on the basis of

Pn(cos θ) = P 0
n(cos θ) = R0

n(θ, φ). (38)

Using equations (34) and (37), the Schmidt-normalized potential due to equivalent point sources can now
be written as

Φ(ri) =
K∑
k=1

rkqk

∞∑
n=0

(
rk
ri

)n+1 n∑
m=0

Pmn (cos θi)P
m
n (cos θk) cos(mφi −mφk). (39)

Comparing the spherical harmonic- and source potential expansion (equation (17) for internal sources and
equation (39), respectively) enables the conventional spherical harmonic Gauss coefficients to be synthesized
directly from the equivalent point source coefficients q (Hodder, 1982),

gmn =
K∑
k=1

(
rk
a

)n+2

qkP
m
n (cos θk) cos(mφk) (40)

hmn =
K∑
k=1

(
rk
a

)n+2

qkP
m
n (cos θk) sin(mφk). (41)

This transformation is used when comparing the power spectra between the derived equivalent source models
and the models CM5, MF7 and CHAOS-6 in chapter 3.
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2.3 The inverse problem

Estimating the lithospheric field at the Earth’s surface from a finite set of imperfect satellite measurements
is an ill-posed and non-unique inverse problem, i.e. there exist several solutions for q which are able to
represent the field measurements d within their respective estimated errors. Different mathematical tech-
niques exist for dealing with this problem (e.g. Menke, 2012; Aster et al., 2013). In order to derive robust
model solutions which account for a non-Gaussian data error distribution, an iteratively re-weighted least
squares algorithm (Walker and Jackson, 2000) is often applied that includes model regularization and Hu-
ber weighting (Constable, 1988). The corresponding model solution minimizes both the differences between
model predictions and measurements (misfit norm) and a measure of the model complexity R (regularization
norm).
From equation (29) the forward problem of the magnetic field due to equivalent sources may be written

A = Gq, (42)

where A = [Ar,Aθ,Aφ] is a column vector containing model predictions for 3N vector components at the N
locations of magnetic field measurements, G = [Gr,Gθ,Gφ] represents the corresponding 3N ×K Green’s
matrix, and q is the model vector of all K source strengths.
Here, we are interested in the inverse problem where q is to be determined from imperfect observations
d = [dr,dθ,dφ]. Finding a suitable estimation of the model vector q involves the minimization of the
residual vector e, which represents observation errors and data contamination from unmodelled sources,

e = d−A = d−Gq. (43)

2.4 The least squares solution

The model which minimizes the squared L2-norm of the residuals, equivalent to the squared Euclidean length
of the vector e, ‖d−Gq‖22 = eTe, is commonly known as the least squares solution qLS ,

min = ‖d−Gq‖22
= (d−Gq)T (d−Gq)

=
∑
ψ

N∑
i=1

(dψi − (Gψq)i)
2 =

∑
ψ

N∑
i=1

(dψi −
K∑
k=1

gψikqk)2

(44)

qLS = (GTG)−1GTd (45)

where ψ represents one of the three vector field components r, θ or φ.
It is important to note that GTG has to be non-singular in order to solve the above least-squares solution.
A singular matrix contains columns (or rows) with only zero values, or columns (or rows) which are linearly
dependent on each other (Aster et al., 2013).

2.5 Maximum likelihood and robust estimation

Maximum likelihood estimation can be applied when the data observations contain independent random
errors with known statistical properties (Aster et al., 2013).
Assuming independent observations with identically distributed errors, the probability density function
p(d|q), or likelihood, for obtaining a given data vector component d = {d1, d2, ..., dN} given the model
parameters q = {q1, q2, ..., qK}, is

p(d|q) = p(d1|q) · p(d2|q) · ... · p(dN |q)

= Πi=N
i p(di|q).

(46)
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The corresponding formula for Gaussian (normal) and Laplacian (double-sided exponential) distributions
are

Gaussian : p(di|q) =
1

σi
√

2π
exp
− 1

2

(di−(Gq)i)
2

σ2
i

Laplacian : p(di|q) =
1

σi
√

2
exp
−
√

2
|di−(Gq)i|

σi

(47)

with σi being the standard deviation of the errors corresponding to the ith datum, and (Gq)i represents the
prediction of the model q for the ith datum.
Applying the maximum likelihood principle, the desired model vector results in the maximization of the like-
lihood probability function, which is equivalent to minimizing the corresponding negative natural logarithm,

p(d|q) = max→ − ln p(d|q) = min. (48)

The latter, also known as the loss function ρ(d|q) = ρ(e), is a function of residuals e =
∑N
i=1(di − (Gq)i)

and thus dependent on the data error distribution,

ρ(d|q) = − ln p(d|q)

= − ln ΠN
i=1p(di|q)

= −
N∑
i=1

ln p(di|q)

=
N∑
i=1

ρ(di|q)

=
N∑
i=1

ρ(ei).

(49)

The loss functions corresponding to errors following the Gaussian and Laplacian probability functions of
equation (47) are thus given by

Gaussian : ρ(di,q) = ln(σi
√

2π) +
1

2

(di − (Gq)i)
2

σ2
i

→
N∑
i=1

(di − (Gq)i)
2

σ2
i

= min

Laplacian : ρ(di,q) = ln(σi
√

2π) +
√

2
|di − (Gq)i|

σi
→

N∑
i=1

|di − (Gq)i|
σi

= min

Assuming a Gaussian error distribution, the loss function to be minimized is thus
∑N
i=1

(di−(Gq)i)
2

σ2
i

. In-

troducing a diagonal inverse data error covariance matrix C−1 = diag(1/σ2
1 , 1/σ

2
2 , ..., 1/σ

2
N ), the Gaussian

loss function is equivalent to equation (44): ‖dV −G
V

q‖22, for dV = C−1/2d and G
V

= C−1/2G (Aster

et al., 2013). The respective compact notation in terms of the vector of residuals is eTC−1e. Thus, taking
the individual data error variances into account, the model or least-squares solution which minimizes the
squared residual L2-norm is statistically the most likely solution when the data errors follow a Gaussian
distribution. This means also that least-squares model solutions are not the maximum likelihood solution
when the corresponding data error distribution is not Gaussian (Fox and Weisberg, 2002).
The method of minimizing functions that give smaller weight to large values of the residuals is an attempt
to reduce the effect of possible data outliers, allowing more robust model solutions to be achieved. This
approach substitutes the removal of noisy data and leads to model results which are less sensitive to data
outliers.
Minimizing ρ(ei) is equivalent to setting Ψ(ei) = ∂ρ(ei)

∂ei
= 0, where Ψ(ei) is known as the influence func-

tion. The weight function for generating robust model solutions is defined to be wi = Ψ(ei)
ei

, which leads

to
∑N
i=1 wiei = 0. Table 1 lists possible influence functions and weight functions corresponding to typically
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assumed loss functions: Gaussian, Laplacian, Huber, Tukey and Ekblom.
For Gaussian loss functions this approach yields Ψ(ei) = ei, which results in a unity weight function.
However, non-Gaussian error distributions result in non-unity weight functions, and require to minimize
eTC−1/2HC−1/2e, with H = diag(w1, w2, ..., wN ) being a diagonal matrix containing the individual weight
functions for the given error distribution. Since the weight functions are dependent on the residuals and
thereby also on the model values q, robust model solutions for data with non-Gaussian error distributions
can only be derived iteratively, updating the weights for every iteration until model convergence is reached.
The corresponding approach is known as the iteratively re-weighted least squares (IRLS) method.
While Gaussian error distributions are characterized by unity weights, the weights decline for the Huber
ρ-functions when |ei| > ϑ. ϑ symbolizes a tuning constant which decreases for increasing resistance towards
data outliers (Fox and Weisberg, 2002). The weights corresponding to the Tukey bisquare ρ-function are
zero for |ei| > ϑ and decline for 0 < |ei| ≤ ϑ (Fox and Weisberg, 2002).

Data error distribution Loss function Influence function Weight function

ρ(e) ∝ Ψ(e) = δρ(e)
δe

w(e) = Ψ(e)
e

Gaussian (normal) 1
2
e2 e 1

Laplacian |e| sgn(e) sgn(e)
e

Huber

{
1
2
e2 if |e| ≤ ϑ

ϑ|e| − 1
2
ϑ2 if |e| > ϑ

{
e if |e| ≤ ϑ
ϑ if |e| > ϑ

{
1 if |e| ≤ ϑ
ϑ
|e| if |e| > ϑ

Tukey (bisquare)

{
ϑ2

6
[1− [1− ( e

ϑ
)2]3] if |e| ≤ ϑ
ϑ2

6
if |e| > ϑ

{
e(1− e2

ϑ2 )2 if |e| ≤ ϑ
0 if |e| > ϑ

{
[1− ( e

ϑ
)2]2 if |e| ≤ ϑ

0 if |e| > ϑ

Ekblom (e2 + ϑ2)p/2 pe(e2 + ϑ2)p/2−1 p(e2 + ϑ2)p/2−1

Table 1 Comparison of the loss-functions corresponding to different data error distributions. The respective influence
(Ψ) and weight functions (w) are given in the last two columns. ϑ and sgn represent a positive constant and the
signum function, respectively. p indicates the type of norm (L1-norm → p = 1, L2-norm → p = 2, etc.)

2.6 Data discrepancy functional

Assuming a general least-squares problem and a non-Gaussian data error distribution, the least-squares
solution is fit to the data by minimizing a data discrepancy functional, which can be expressed as the
sum over loss functions ρ of the residuals (as described in section 2.5). The data discrepancy func-
tional of the current study uses a squared L2-norm of the residuals which accounts for the expected
data error variances and provides equal area weighting. The latter is ensured by the implementation
of the sine function of the data latitudes into the diagonal inverse data error covariance matrix C−1 =

diag( sin θ1
(σr1)2 ,

sin θ2
(σr2)2 , ...,

sin θN
(σrN )2 ,

sin θ1
(σθ1)2

, sin θ2
(σθ2)2

, ..., sin θN
(σθN )2

, sin θ1
(σφ1 )2

, sin θ2
(σφ2 )2

, ..., sin θN
(σφN )2

). In order to account for non-Gaussian

data errors, Huber weights are implemented and, similar to Olsen (2002), with the corresponding tuning
constant chosen as ϑ = 1.5. For a given iteration j + 1 the discrepancy functional is given by

(d−Gqj+1)TW
j
(d−Gqj+1) =

∑
ψ

N∑
i=1

sin(θi) · hψi,j · [dψi − (Gψq)i]
2

(σψi )2
. (50)

with
W

j
= C−1/2H

j
C−1/2. (51)

and ψ representing a given vector component (r, θ or φ).

Note that the diagonal Huber weighting matrix H
j

= [hrj ,h
θ
j ,h

φ
j ] is determined by the model solution of the

previous iteration. According to Table 1, the respective components are given by

hψi,j =

{
1 if εψi,j ≤ 1.5,

1.5/εψi,j if εψi,j > 1.5
(52)
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with εψj representing the normalized residuals with respect to the expected latitude-dependent data error

standard deviation values σψ,

εψj = |eψj /σψ|. (53)

The Huber distribution consists of a Gaussian distribution in the center, and a Laplace distribution in the
tails. Whenever the values of εψj are smaller than 1.5, the model derivation is performed under the L2-
norm measure of misfit, which assumes that small residuals follow a Gaussian distribution. Huber weight
values below unity, on the other hand, mimic a L1 misfit norm, accounting for unmodeled fluctuations in
the measurements and assuming that the corresponding data errors originate from a double exponential (or
Laplace) distribution (Walker and Jackson, 2000).

2.7 Model regularization

The general least-squares problem, (d−Gqj+1)TW
j
(d−Gqj+1), has infinitely many least square solutions

which, in the presence of data noise, are unstable and highly susceptible to outliers (Aster et al., 2013).
A common approach for stabilizing the model solution and solving ill-posed discrete inverse problems is
to introduce model regularization, as pioneered by Tikhonov and Arsenin (1977). The respective model
minimizes an objective function Θ which combines the data discrepancy functional, quantifying the misfit
between the measurements d and the model predictions Gq, and a penalty functional R, inducing stability
and information regarding the final model complexity. The objective function for the corresponding damped
least squares problem is

Θ(qj+1) = (d−Gqj+1)TW
j
(d−Gqj+1) + αR(qj+1). (54)

where α > 0 is a regularization parameter, representing the trade-off between the two functionals (Menke,
2012). For α = 0, the resulting model solution solely minimizes the data misfit, while the data influence is
almost zero in favour of the minimization of the specified property of the model for α = 1 (dependent on
the setup of R). Note that the units of α are dependent on the type of regularization.Ionospheric magnetic
signals or data noise which have not been removed from the original measurements can be mapped into
lithospheric field estimates, resulting in erroneous small-scale spatial field structures. Regularization can be
used to control these short wavelength signals and reduces their tendency of blowing up in amplitude on
downward continuation (e.g. O’Brien and Parker (1994); Maus et al. (2006)).

2.8 A regularized IRLS approach

If a forward problem is non-linear, iterative approaches (e.g. the gradient and related Newton methods) can
be used to minimize the objective function Θ by linearizing the forward problem about an estimate of the
model solution qj for a given iteration j (Luenberger, 1969).
Some of the regularization norms we investigate (L1-norm and maximum entropy) result in non-linear objec-
tive functions. Thus, an iterative approach is necessary. Applying the Newton method, the predicted model
parameters at the j + 1 iteration are given by (eq. 3.84 in Tarantola (2005))

qj+1 = qj − κj [∇∇Θ(qj)]
−1[∇Θ(qj)], (55)

where ∇∇ represents the Hessian matrix of second order partial derivatives, and κj is a real constant small
enough for preventing the algorithm to diverge and large enough for allowing the algorithm to advance
(Tarantola, 2005). Since the Hessian matrix accounts for the local geometry of the objective function, κj is
unity for most applications. For Θ(qj+1) = (d −Gqj+1)TW

j
(d −Gqj+1) + αR(qj+1) the gradient and

Hessian operators with respect to q are

∇Θ(qj+1) = −2GTW
j
(d−Gqj+1) + α∇R(qj+1) (56a)

∇∇Θ(qj+1) = 2GTW
j
G + α∇∇R(qj+1). (56b)
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Using the above notations and taking κj = 1, equation (55) can be written as a perturbation δq to qj ,

qj+1 = qj + δq

→ δq = qj+1 − qj

= [2GTW
j
G + α∇∇R(qj)]

−1[2GTW
j
(d−Gqj)− α∇R(qj)].

(57)

We apply a variant of the Newton method which solves for the vector qj+1, rather than δq (Stockmann
et al., 2009). Using equations (56a) and (56b), equation (55) transforms into

qj+1 = (2GTW
j
G + α∇∇R(qj))

−1(2GTW
j
d + α∇∇R(qj)qj − α∇R(qj)). (58)

Equation (58) can be applied to both quadratic and non-quadratic regularization norms. Iteration is per-
formed until the norm of the model change is less than 1% of the model norm (Aster et al., 2013; Stockmann
et al., 2009), ∑

(qj − qj+1)2∑
q2
j+1

=
‖qj − qj+1‖22
‖qj+1‖22

< 0.01 . (59)

2.8.1 Quadratic regularization

Choosing the regularization norm to be the quadratic (or L2) norm of the model parameters, also sometimes
known zeroth-order Tikhonov regularization, results in a model solution which satisfactorily fits the data
and simultaneously minimizes RQR(q) = qTq. This leads to the following objective function:

Θ(q) = ‖d−Gq‖22 + α‖q‖22
= (d−Gq)TW(d−Gq) + αqTq.

(60)

Applying R(q) = RQR(q), equation (58) transforms into the well known damped least squares solution

qQRj+1 = (GTW
j
G + αI)−1GTW

j
d (61)

where a factor 1
2 has been included into the constant α.

The applied quadratic regularization norm leads to model solutions with smallest possible amplitudes of the
monopole values. However, this constraint may not always be geologically relevant because there are sev-
eral large amplitude local magnetic field anomalies, e.g. the West African Craton anomaly and the Bangui
anomaly. Allowing a model to create such locally high amplitude anomalies is possible by regularizing the
model entropy or an L1-norm of the model rather than the squared amplitude of the model parameters, see
sections 2.8.3 and 2.8.2.
The investigated quadratic regularization models, with their different α values, share the same starting point,
a well-converged, but un-regularized (α = 0), model solution. The initial Huber weights H

0
are defined to

be unity.
The above routine has been investigated for different values of α. The preferred quadratic regularization
models of this thesis are found based on the corresponding L-curve (Aster et al., 2013; Menke, 2012), model
statistics, predicted magnetic field maps at the Earth’s surface and power spectra. Respective figures and
discussions of the choice of α are given in section 3.5. All presented models fulfill the convergence criterion
of equation (59).
In the current study the quadratic regularization norm is equivalent to the squared amplitude of the model
parameters. However, other functions of the model parameters could have been used instead if other model
characteristics are to be minimized. For instance, other models of the lithospheric field have applied quadratic
regularization to the modelled radial magnetic field values at the Earth’s surface (e.g. Stockmann et al.
(2009)).
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2.8.2 Maximum entropy regularization

The maximum entropy regularization approach was originally introduced by Gull and Daniell (1978) as a
mathematical tool to improve astronomical image resolution. However, the method’s ability to recognize
patterns by the enhancement of local signals has been valuable in many scientific fields (Gull and Skilling,
1989, 1999; Smith and Grandy, 2013), e.g. tomography (Hanson and Silver, 2012) and natural language
processing (Berger et al., 1996). Within geomagnetism, the technique has successfully been applied for
model predictions of the core field (Jackson et al., 2007; Gillet et al., 2007) and lithospheric field (Stockmann
et al., 2009; Kother et al., 2015). Especially lithospheric magnetic field models benefit from the preservation
of high amplitude local field structures.
Gull and Skilling (1999) define the entropy S of a model q, which can consist of both negative and positive
values, as

S(q, ω) =
K∑
k=1

[
υk − 2ω − qk ln

(υk + qk
2ω

)]
. (62)

with ω being a default parameter, with the units as q, which defines the scale of the entropy function
(Maisinger et al., 2004) and υk =

√
q2
k + 4ω2.

The maximum entropy function is non-quadratic and results in a non-linear objective function Θ, requesting
the iterative scheme of equation (58) to determine a model with minimal complexity for a given level of
misfit. Similar to Stockmann et al. (2009), we apply the negative entropy (negentropy) as regularization
norm (Gillet et al., 2007),

RER(q, ω) = −4ωS(q, ω) (63)

The negentropy RER becomes identical to the quadratic norm for large values of ω, thus making comparisons
between the two regularization methods possible.
Keeping in mind the following first order derivatives,

δ

δq

√
q2 + 4ω2 =

q√
q2 + 4ω2

(64)

δ

δq

[
q ln

(√q2 + 4ω2 + q

2ω

)]
= ln

(√q2 + 4ω2 + q

2ω

)
+
q
(

q√
q2+4ω2

+ 1
)

√
q2 + 4ω2 + q

=

√
q2 + 4ω2 ln

(√
q2+4ω2+q

2ω

)
+ q√

q2 + 4ω2

(65)

the gradient and Hessian operators of RER for a given source qk are

(∇RER)k = −4ω
[ qk√

q2
k + 4ω2

−
√
q2
k + 4ω2 ln

(√
q2k+4ω2+qk

2ω

)
+ qk√

q2
k + 4ω2

]
= 4ω ln

(√q2
k + 4ω2 + qk

2ω

)
= 4ω ln

(υk + qk
2ω

)
(66)

(∇∇RER)k =
4ω√

q2
k + 4ω2

δkk

=
4ω

υk
δkk

(67)

with δkk representing the Kronecker delta.
Using RER(q, ω) as the regularization norm and applying the respective gradient and Hessian operators in
equation (58), the Newton-type iterative scheme becomes

qERj+1 = (2GTW
j
G + α∇∇RER(q, ω))−1(2GTW

j
d + α∇∇RER(q, ω)qERj − α∇RER(q, ω))

= (2GTW
j
G + αγj)

−1(2GTW
j
d + αγjq

ER
j − 4αωβj)

(68)

29



with

γj = diag

(
4ω

υ1,j
,

4ω

υ2,j
, ...,

4ω

υK,j

)

βj =

(
ln(

υ1,j + q1,j

2ω
), ln(

υ2,j + q2,j

2ω
), ..., ln(

υK,j + qK,j
2ω

)

)
.

(69)

The iterative scheme requires a starting condition for the model qER0 , which is defined to be the converged
quadratic regularization model with the same α: qER0 (α) = qL2

final(α). As before, the initial values for the
Huber weights are unity and the convergence criterion of equation (59) is used to determine the final model
solution.
Different values for ω are investigated by means of the corresponding model statistics, predicted magnetic
field maps at the Earth’s surface and power spectra. Respective figures and discussions are given in section
3.6.

2.8.3 L1-norm regularization

The derivation of sparse models with as many as possible model parameters pushed towards zero, can be
achieved by means of the L0 or L1 norm regularization of the model parameters. The former is numerically
difficult to implement, thus the current study applies the L1 norm to ensure model sparsity (Schmidt, 2005).
L1-norm regularization involves a regularization norm R(q) = ‖Lq‖1, where L is a matrix representing
any linear function of the model parameters q. The current study investigates the L1 norm of the model
parameters, which leads to L being the identity matrix - neglectable from further equations. The objective
function to be minimized with respect to the model parameters is thus given by

Θ(q) = ‖d−Gq‖22 + α‖q‖1 . (70)

Note that the units of α are now [nT−1].
Using the L1-norm for model regularization implies that the equivalent point source amplitudes are assumed
to follow a Laplacian distribution. The resulting field predictions will possess localized anomalies with large
amplitudes, which is a characteristic feature of the lithospheric magnetic field.
The gradient and Hessian operators corresponding to the L1 regularization norm are dependent on the
signum function

sgn(qk) =

 1 for qk > 0
0 for qk = 0
−1 for qk < 0

(71)

and given by

∇R =
K∑
k=1

sgn(qk) =
K∑
k=1

qk
|qk|

= Tq (72a)

∇∇R = T (72b)

with T being a K ×K diagonal weighting matrix of elements Tk,k = 1
|qk| (Aster et al., 2013).

The formulae of equations (72a) and (72b) give the following solution for equation (58) (Olsen and Finlay,
2016)

qL1
j+1 = [GTW

j
G + αT

j
]−1GTW

j
d (73)

where a factor 1
2 has again been included into the constant α.

Since both W and T are dependent on the model parameters, equation (73) needs an iterative scheme to
be solved. The corresponding elements are updated for each iteration depending on the residuals and model
parameters, respectively. The necessary starting model and initial Huber weights are defined to be the
converged quadratic regularization model with α = 500 nT−2 and the corresponding weights, respectively.
The L1 regularization norm transforms the objective function Θ into a convex optimization problem in terms
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of q, as the function is non-differentiable for qk = 0 (Tk,k is undefined for qk = 0) (Schmidt, 2005). Different
techniques exist for preventing this singularity of T. One approach suggested by Aster et al. (2013) involves
approximating the L1 norm minimizing solution by means of a constant tolerance value ϑ, which is much
smaller than the value of qk:

Tk,k =

{ 1
|qk| if |qk| ≥ ϑ

1
ϑ if |qk| < ϑ

(74)

However, the routine applied in this thesis is based on the study of Farquharson and Oldenburg (1998).
Letting T be a function of the Ekblom weight (see Table 1, for the L1 norm→ p = 1) rather than the model
parameters, the respective diagonal matrix elements are instead

Tk,k =
1

(q2
k + ϑ2)1/2

(75)

with ϑ > 0. Small tolerance values let the measure tend to the L1 norm, while large values let the reg-
ularization matrix behave like a scaled sum of squares measure (Farquharson and Oldenburg, 1998). The
performed calculations use ϑ = 1 · 10−4nT. The derived global lithospheric field models based on equivalent
monopoles and using L1-norm regularization are presented in section 3.6. All models fulfill the convergence
criterion of equation (59).

2.9 Imposing the divergence-free constraint

Isolated magnetic monopoles are only a practical tool and do not exist in reality (∇ ·B = 0), so the derived
model solutions must ensure a zero magnetic net flux (O’Brien and Parker, 1994) as

K∑
k=1

qk = 0. (76)

This requirement is equivalent to a zero mean value of q.
The enforcement of the divergence-free condition for the quadratic regularization scheme can be acquired
by means of Lagrange multipliers (T. J. Sabaka, private communication with N. Olsen and M.D. Hammer,
2011):

min (d−Gq)TW(d−Gq) + αR(q)

subjected to Lq = 0
(77)

where L represents a linear function of q, which in this case is a row vector containing ones, and R is the
chosen regularization function, for illustration here set to RQR = ‖q‖22.
Utilizing Lagrange multipliers u, equation (77) is expressed as

J(q,u) = (d−Gq)TW(d−Gq) + αR(q) + uLTq (78)

The stationary condition requires ∂J(q,u)
∂q = ∂J(q,u)

∂u = 0. Thus,

∂J(q,u)

∂q
= 0 = −2GTW(d−Gq) + α∇R(q) + uLT

→ q = (GTWG + αI)−1(GTWd− 1

2
uLT )

(79)

∂J(q,u)

∂u
= 0 = LTq

= LTY(GTWd− 1

2
uLT )

= LTYGTWd− LTY
1

2
uLT

→ u = 2LTYGTWd(LTYL)−1

(80)
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Using the equation of u for solving equation (79) with respect to q, the constrained quadratic regularized
model solution with zero mean is given by

q = YGTWd−YLT ·YGTWd(LTYL)−1LT

= q∗ −YLTq∗(L
TYL)−1LT

(81)

with Y = YL2 = (GTWG + αI)−1, q∗ = YGTWd being the converged un-constrained model solution of
equation (61), and W containing the respective Huber weights.

The above method is also applicable for the L1-norm regularization scheme. In this case the regularization
function of equation (77) is given by RL1 = ‖q‖1, which leads to a similar version of equation (81). The
only difference is seen in the definition of Y, which is a function of both q∗, the converged un-constrained
model solution of equation (73), and the corresponding IRLS weights:
Y = YL1 = (GTWG + αT)−1.

The constrained model solution for the maximum entropy regularization scheme is dependent on the con-
verged and un-constrained model predictions of equation (68) (q∗) as well as the corresponding values for
γ, β and the weighting matrix W. Assuming 2GTWd >> αγq∗ − 4αωβ, which is a good approximation
for small values of α, the constrained maximum entropy regularized model solution with zero mean can be
approximated by equation (81) with Y = YER = (GTWG + α

2 γ)−1.

2.10 Geomagnetic assumptions when using scalar data

When the observed data is given by scalar (intensity) values rather than vector measurements of the
geomagnetic field, some modifications have to be made in order to use the above described mathemati-
cal routine. Scalar values are defined by the square root of the sum of the squared vector components:

A = |A| =
√
A2
r +A2

θ +A2
φ (for A = [Ar, Aθ, Aφ]), which leads to a non-linear version of equation (42),

A = G(q). This relation is typically linearized by projecting the lithospheric field onto the main field direction
(Blakely, 1996, p. 179),

A = |B̃core + A| − |B̃core| (82a)

=

√
(B̃core + A)(B̃core + A)− |B̃core| (82b)

=

√
B̃core · B̃core + A ·A + 2A · B̃core − |B̃core| (82c)

≈ (B̃core · B̃core)
1
2 + (B̃core · B̃core)−

1
2 (B̃core ·A)− |B̃core| (82d)

= A
B̃core

|B̃core|
(82e)

Equation (82d) uses the assumption that the magnitude of the lithospheric field is small compared to the

main field intensity, |A(r)| � |B̃core(r)|. For a specific location r it yields

A(r) = A(r)
B̃core(r, t)

|B̃core(r, t)|
= A(r)b̂(r)

(83)

where B̃core(r, t) is an estimation of the main field at a particular time t based on a certain global geomagnetic

field model (e.g. CHAOS or IGRF), and b̂(r) is the unit vector along the main field direction at location r
(Langel and Hinze, 1998, p. 121).
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The scalar version of equation (42) is then

A(ri) = A(ri)
B̃core(ri)r̂ + B̃core(θi)θ̂ + B̃core(φi)φ̂

|B̃core(ri, t)|

=
K∑
k=1

qkgik
B̃core(ri)r̂ + B̃core(θi)θ̂ + B̃core(φi)φ̂

|B̃core(ri, t)|

=
K∑
k=1

qk
1

|B̃core(ri, t)|
∑

ψ=r,θ,φ

gik,ψB̃
core(ψi)

= Gsq

(84)

with Gs being a combination of the Green’s matrix components used for vector measurements as well as the

linearization factor b̂.

2.11 Residual statistics for model comparison

Both global and regional equivalent point source models of this thesis will be assessed by means of the
corresponding residual statistics. For a given field component ψ (for ψ = r, θ or φ) the differences between
Huber-weighted model predictions (Aψ) and observations (dψ) are denoted as ∆Bψ. The associated nor-
malized (by latitude-dependent standard deviation values) and Huber-weighted residual root-mean-square
value (RMS) and residual 2-norm are given by

RMS ∆Bψ =

√√√√√∑N
i=1 h

ψ
i ·
(

∆Bψi
σψi

)2

∑N
i=1 h

ψ
i

Residual 2-norm =

√√√√ N∑
i=1

(∆Bψi )2

(85)
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3 Global lithospheric magnetic field models using satellite data
and equivalent point sources

The global lithospheric field models of this thesis are based on three-component vector data from the CHAMP
satellite. Data within the polar gap regions are represented by CHAOS-6 estimates (Finlay et al., 2016a) for
the radial field component at 300 km altitude. Section 3.1 starts with a brief introduction to geomagnetic
satellite data and mission highlights of the last century. The CHAMP data used, including data error esti-
mates, are presented in section 3.2. Further, the considerations for determining both an appropriate source
amount and depth for the global lithospheric field models are given in section 3.3. The effect of polar gaps
on global field models based on equivalent sources is found to be limited to regions lacking data. A short
discussion of this is given in section 3.4. The remaining part of this chapter focuses on the models derived
using the different regularization schemes that were presented in chapter 2. The results are compared to
each other and state-of-the-art models MF7 (Maus et al., 2008; Maus, 2010), CHAOS-6 (Finlay et al., 2016a)
and CM5 (Sabaka et al., 2015). The comparison is grounded in global and regional field maps, as well as
misfit statistics, degree/order matrices, power spectra and degree correlations. A summary of this chapter
is given in section 3.9.
Note that the map projections of the presented models are the direct output of the corresponding monopole
values rather than an approximation based on a truncated SH expansion.
It should further be noted that the derived models are slightly different from the results of Kother et al.
(2015). These differences are due to several factors: a) This thesis works with equal area spaced sources
rather than sources placed on an icosahedral grid. b) The source depth of the presented models is 80 km
deeper than in the paper version. c) More sources are used in the thesis version. d) A more recent version
of the CHAOS model is used for generating synthetic polar gap data and the data error values. e) The large
differences in regularization parameters are due to the difference of units used: gik = −êi · ∇ 1

rik
with source

unit being nT · km2 (paper code version) and gik = −êi · ∇ r2k
rik

with source units in nT (see equation 103).

The global lithospheric field models of this thesis are generated using MATLAB R© version 2013a at the
DTU Space HPC cluster. Depending on the cluster occupation, the calculation time for one iteration varies
between approximately 7 and 36 hours (amount of iterations needed for the final models mono-QR, mono-ER
and mono-L1 is 5, 2 and 4, respectively), with the longest time spent on the derivation of GTWG. The
validity of the used mathematical codes has been verified by visual inspection of the derived field prediction
maps and by comparison of the respective statistics with already existing lithospheric field models.

3.1 Geomagnetic satellite data

The global coverage of geomagnetic satellite data has contributed enormously to our current knowledge of
the geomagnetic source fields, especially the main field and large-wavelength lithospheric field. Regarding
the latter, satellites have some advantages compared to near-surface surveys. They provide a global data
distribution and are capable of covering large regions of the Earth within a relative short amount of time.
Also the prominent data processing problems along survey boundaries vanish when using satellite measure-
ments.
Satellites follow elliptical orbits (with the Earth being in one of the two focus points) with orbital periods
ranging typically between 90 and 200 minutes (Langel and Hinze, 1998). Thus, the orbital shape is defined
by the ellipse’s apogee and perigee points (farthest and closest to the Earth, respectively) as well as the
satellite orbit inclination. The latter represents the angle between the Earth’s equatorial plane and the
satellite path. Thus, a complete global data coverage can only be provided for an inclination of 90 degrees.
The magnetometers carried by satellites are of the fluxgate or the proton precession type, sometimes both.
The latter, also denoted as scalar magnetometers, measure the field strength only and are not dependent
on the information of the satellite’s orientation in space. A fluxgate magnetometer, however, is designed
to measure the complete vector field. Thus, in order to interpret the respective measurements correctly, it
is crucial to know the accurate magnetometer orientation in space. Today this directional information is
provided by satellites’ on-board star camera observations which are compared with known constellations of
fix stars.
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The first observations of the Earth’s magnetic field from space were provided by Sputnik 3. The soviet
satellite, launched in 1958, provided three-component geomagnetic measurements with an accuracy of ap-
proximately 100 nT for the area of Soviet Union (Langel and Hinze, 1998). Several geomagnetic satellite
missions followed, improving both the satellite technology, data quality and coverage. Regarding major
contributions to lithospheric field studies, it is worth mentioning Cosmos 49 (1964), three of the six POGO
satellites (OGO-2 (1965), OGO-4 (1967) and OGO-6 (1969)) and Magsat (1979). While Cosmos 49 and
POGO provided measurements for the magnetic field magnitude, the Magsat spacecraft was capable of mea-
suring both magnetic field magnitude and direction. Compared to previous missions, POGO and Magsat
had the great advantage of on-board data recording devices which enabled full-orbit data coverage (Langel
and Hinze, 1998).

The 21st century has been a new era for geomagnetic satellite measurements. Initiated by the launch of the
Ørsted satellite in 1999, the International Decade of Geopotential Field Research inspired additional two
satellite missions in 2000: CHAMP and Ørsted-2/SAC-C (Friis-Christensen et al., 2008). All three missions
provided high-precision geomagnetic data and contributed valuable new knowledge of the Earth’s magnetic
field. However, being single-satellite missions, none of the generated data was capable in representing the
dynamical behaviour of the geomagnetic sources with sufficient accuracy (Thomsen et al., 2003). This fact
created the idea of the Swarm mission: Multiple satellites operating at different altitudes and simultaneously
recording the geomagnetic vector field at low-Earth, near-polar orbits. The mission was proposed to ESA
in 2001, and selected as part of ESA’s Earth Explorer Programme in 2004 (Friis-Christensen et al., 2006).
The final constellation comprised three identical satellites: Swarm Alpha, Swarm Charlie and Swarm Beta.
Swarm Alpha and Swarm Charlie are flying side-by-side, which is especially favourable for studies of iono-
spheric currents (Friis-Christensen et al., 2006) and north-south oriented lithospheric features (Olsen et al.,
2004), while Swarm Beta operates at higher altitude with approximately 3h local time separation. The
corresponding initial altitudes were 514 km and 531 km, respectively (Finlay et al., 2016a). But also core
field models benefit from the satellite trio, as the constellation enables high resolution models of the secular
variation and acceleration which in turn provide insight into the fluid core dynamics (Livermore et al., 2017).
Thousands of scientists and enthusiasts followed the launch of the satellite trio on 22/11/2013.
Swarm provides high-precision and high-resolution measurements of the geomagnetic field and its temporal
evolution using state-of-the-art navigation, accelerometers and electric field measurements. Combined with
the low-altitude orbits, lithospheric field models based on Swarm data are expected to have unprecedented
high resolution. So far, the satellite altitudes are still too high for being directly used for lithospheric field
modelling (about 450 km). However, Kotsiaros (2016) has demonstrated that vector gradient Swarm data
provide lithospheric field models of quality comparable to those based on low-orbit single-missions.

3.2 CHAMP data

The German Challenging Minisatellite Payload (CHAMP) mission, managed by the
GeoForschungsZentrum Potsdam (GFZ), was the first of its kind for simultaneous gravity and magnetic
field measurements (Reigber et al., 2000). Besides geopotential data, the satellite provided atmospheric and
ionospheric information from GPS radio occultation measurements (Reigber et al., 1999).
The satellite was launched on 15/07/2000 designed for a five years mission. Reentry in the atmosphere,
however, did not occur till 19/09/2010. CHAMP operated in an almost circular, low Earth orbit with an
initial altitude of 454 km. Except for a small range of altitude corrections, the satellite dropped its altitude
gradually to values below 340 km in the last period of the mission. The low orbit at the end of its life time
makes the CHAMP data especially interesting for lithospheric field investigations.
The current study uses three-component vector data (with a sampling interval of 30 sec) between 01/01/2009
and 02/09/2010. During that period the satellite was at its lowest altitude (below 340 km) and the solar
activity was rather low. However, a disadvantage of this low altitude is that the satellite is located within
the ionospheric F-region, measuring ionospheric field contributions as internal signals which result in non-
potential field conditions. Thus, in order to use the potential field theory for describing the geomagnetic
vector field, data measurements have to be selected carefully in order to minimize the influence of ionospheric
fields. This is done by selecting data for quiet-time conditions (Kp-index ≤ 20 for quasi-dipole (QD) lati-
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tudes equatorward of ±55◦ and the merging electric field at the magnetopause Em ≤ 0.8mVm for QD latitudes
poleward of ±55◦) and dark regions (sun at least 10◦ below the horizon). Additionally, magnetospheric ring
current effects are reduced by only selecting data with hourly RC-index variations smaller than 2nThr (Olsen
et al., 2014). The remaining data selection follows the same criteria as employed in CHAOS-4 (Olsen et al.,
2014, 2006). Additionally, data with gross outliers are removed in order to prevent strongly correlated noise
from disturbed satellite tracks to effect the lithospheric field models, see Appendix C. The total amount of
3-component satellite vector data is 410,914. The polar gap regions are additionally represented by 12,257
synthetic CHAOS-6 radial field values, see section 3.4.
The final amount of data used for global lithospheric field models of this thesis is thus 3 ·410, 914+12, 257 =
1, 244, 999.

3.2.1 Latitude dependent data errors

Recalling equation (1), the observed geomagnetic vector field Bobs from satellite measurements comprises
contributions from the core field Bcore, lithospheric field Blit, external fields Bext as well as measurement
errors εobs,

Bobs = Bcore + Bext + Blit + εobs. (86)

In order to determine the lithospheric signal, core field and external field contributions are removed from
the observations by means of CHAOS-6 model estimates B̃core and B̃ext which introduce the corresponding
estimation errors ε̃core and ε̃ext. The lithospheric part of the measurements is thus given by

Blit = Bobs − (B̃core + B̃ext + εobs + ε̃core + ε̃ext) (87a)

= Bobs − B̃core − B̃ext − εerror (87b)

= Aobs − εerror (87c)

Aobs = Blit + εerror (87d)

where εerror combines both measurement and model errors. Thus, the observed lithospheric field Aobs

contains also signals which are not based in geological features but rather in inefficient source separation
and measurement errors. The accuracy of Aobs is thereby dependent on the estimated models and their
ability to describe the field contributions of non-lithospheric origin. Assuming that the ”true” lithospheric
signal Blit can be approximated with CHAOS-6 model estimates of the magnetic anomaly field ACHAOS

(for SH degrees n = 16 to 120), the data uncertainties σ (see Fig.9) can be estimated using the residuals
ε = Aobs − ACHAOS for an approximation of εerror. Corresponding covariance matrices are derived by
means of the residual mean values ε in 2◦ QD latitudinal bands with the robust algorithm of Driessen and
Rombouts (2007). For a given band x which comprises the data indexes i it yields

εx = ε(i)−mean(ε(i))

C
x

= cov(εx)

σx =
√

diag(C
x
)

(88)

Thus, data values within a given QD latitudinal band are assigned the same uncertainty (standard deriva-
tion). Note, that the hemispheric asymmetry in Fig.9 corresponds to an observed phenomenon of the Earth’s
magnetic field (Laundal et al., 2017).
The QD latitudes are determined using equation (15) of Emmert et al. (2010) and QD Apex coefficients
for the period 1995-2015. The QD coordinate system is suitable for describing processes due to unmodelled
ionospheric sources, which are assumed to have a major contribution to the derived model residuals (see for
instance Fig. 37), especially at polar latitudes.

3.3 Equivalent source distribution for global lithospheric field models

The equivalent sources used for lithospheric field models in this thesis (both global and regional) are dis-
tributed on an equal area grid at a certain depth below the Earth’s surface, see Fig. 10. The grid is computed

36



−100 −80 −60 −40 −20 0 20 40 60 80 100
0

5

10

15

20

25

30

35

40

45

50

55

st
an

da
rd

 d
ev

ia
tio

n 
σ 

[n
T

]

QD latitude

 

 

σr

σθ

σφ

Figure 9 Latitudinal error values for the applied global lithospheric field data from CHAMP.

with a MATLAB R© routine based on Saff (2005) and kindly provided by E. Thébault.
Table 2 lists different source grid sizes and corresponding median angular distances da between two adjacent
sources. The latter are calculated from the distance between each source and its nearest neighbor. Corre-
sponding horizontal distances at the Earth’s surface ds are approximated by dividing the spherical Earth’s
area with a given amount of globally distributed sources Kg, ds = a

√
4π/Kg, where a = 6371.2 km is the

Earth’s mean radius. Using n = 2πr
λ (based on an approximation of equation (20) for large values of n), the

distance ds (corresponding to a horizontal half wavelength) can be transformed into the respective spherical
harmonic degree.
Similar to SH and the other methods mentioned in section 1.3, the monopole representation of the magnetic
field is based on harmonic functions. Since the equivalent source potential is undefined for rik = 0, see equa-
tion 27, the distance between sources and measurements must be larger than zero. The value should also be
larger than the distance between adjacent sources in order to avoid ringing effects in the generated field maps.
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Figure 10 Global source
distribution of Kg = 2000
equal area spaced sources.

Kg da [deg] ds [km] SH degree

10,000 2.03 225.85 88.62
15,000 1.66 184.41 108.54
30,000 1.17 130.39 153.49
30,722 1.16 128.85 155.33
38,600 1.03 114.96 174.12
45,000 0.96 106.47 187.99
51,000 0.89 100.01 200.14
65,000 0.79 88.59 225.94

Table 2 Global source amount Kg

and corresponding median angular
distances da, surface distances ds
and SH degrees.
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3.3.1 Source grid resolution

A horizontal surface distance of approximately 100 km between adjacent sources is expected to be sufficient
to represent lithospheric satellite measurements at approximately 300 km altitude. In order to define an
appropriate source grid for the global lithospheric field models, un-regularized inversions are computed for
five different grid sizes with corresponding surface source distances around 100 km (Kg = 30722, 38600,
45000, 51000, and 65000) and for depth values between 20 km and 200 km. To limit the computation time,
only the magnetic field intensity values (scalar data) corresponding to the North American region (ranging
from -140 to 60 degrees longitude and from 10 to 60 degrees latitude) of the CHAMP data set are used.
The resulting amount of data is 26,009, compared to the original three-component vector data amount of
3 · 410, 914.
The two lowest grid resolutions investigated (Kg = 30722, 38600) result in converging solutions for all in-
vestigated depths. Models for Kg = 45000, 51000, 65000 converge up to a source depth of 180 km, 140 km,
and 80 km, respectively. This is expected from the previous investigations of O’Brien and Parker (1994).
Figure 11 illustrates the derived model misfit statistic by means of the Huber-weighted residual 2-norm and
corresponding normalized Huber-weighted residual RMS. Based on these results, no major model improve-
ments can be achieved beyond a global distributed source amount of Kg = 38, 600, which henceforth is
the used grid size for the global lithospheric field models of this thesis. The corresponding median angular
distance is da = 1.03◦ which means approximately 115 km distance between two adjacent sources at the
Earth’s surface. The respective spherical harmonic degree extension is n = 174.

3.3.2 Source grid depth

Similar to Ravat et al. (2002), an appropriate source depth for the global lithospheric field models may be
found by investigating the residuals derived from un-regularized model inversions of different source depth
values. Unfortunately, using equivalent source values generated from the un-regularized inversion scheme,
downward continuation of the lithospheric field results in unrealistic large values due to contamination of
the short-wavelength fields in the original data set. To prevent this amplification of short wavelength noise,
all presented models in this section are derived using quadratic regularization with α = 900 nT−2.
Equivalent source values have been derived for four different source depths (100 km, 140 km, 180 km and
220 km) using quadratic regularization and the North American region of the three-component CHAMP
data set. In order to speed up these tests, only sources with an angular distance of maximal 0.89◦ to the
closest data point are taken into account for the respective model derivations The total number of equivalent
sources is thereby reduced from Kg = 38600 to K = 3345.
The middle part of Fig. 12 illustrates the radial component of the modeled lithospheric field values at data
altitude corresponding to an equivalent source depth of 180 km. The right part of the figure indicates that
large residual values are mainly caused by uncorrected noise in individual orbits and regions of the auroral
oval. As indicated by the similar model statistics in Table 3, the respective figures for the other source depth
values (not given here) are very similar.

100 km 140 km 180 km 220 km

RMS ∆Br 1.475 1.478 1.481 1.487
RMS ∆Bθ 1.562 1.563 1.563 1.564
RMS ∆Bφ 1.316 1.316 1.317 1.319

Table 3 Normalized (by latitude-dependent standard deviation values) RMS values of the Huber -weighted residuals
between the regional CHAMP observations and quadratic regularized models using α = 900 nT−2 and different
equivalent source altitudes. The used source amount of K = 3345 corresponds to a global distribution of Kg = 38600
equal area spaced sources.
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Figure 11 Misfit statistics for the un-regularized equivalent source models corresponding to CHAMP lithospheric
intensity data of the North American region. For different grid sizes and source depth values the figure shows Huber -
weighted residual 2-norm (left) and normalized RMS values of the Huber -weighted residuals (right). The chosen grid
size of Kg = 38600 is given in red.

In order to ease comparison between models of different source depths, the source values are downward
continuated to the Earth’s surface. Fig. 14 illustrates the corresponding results for the radial field compo-
nent using the regularizetion parameter α = 900 nT−2. The general lithospheric behavior is present in all
four models. However, distinct north-south striping features appear in the Pacific. According to Fig. 13
these structures are not caused by the used source locations but probably by unmodeled field signals still
present in the data. Fig. 14 shows also a clear positive correlation between the amplitude of these structures
and the used equivalent source depth. This is, however, also dependent on the type of regularization and
the regularization parameters used.
It is noteworthy that deep source locations act as a kind of regularization, as they enhance the long wave-
length structures of the lithospheric field. The sources should not be placed too deep in order to represent
the satellite measurements, and not too shallow for preventing source signatures on the resulting field maps.
Since this is the case for the investigated models, the final source depth for model predictions based on
satellite measurements can be chosen below 100 km, as unwanted surface field structures can be avoided
using the correct choice of regularization parameter. The source depth used for model predictions based on
satellite measurements is henceforth defined to be 180 km. With the regularization parameters used in this
section, the surface models reflect the main features of the lithosphere. The striping in the oceanic regions
is reduced significantly compared to shallower source depth models. Source values deeper than 180 km risk
removing important short wavelength information from the derived models. The precise choice pf depth is
not crucial, given our use of regularization to control the power of small length scales, see also O’Brien and
Parker (1994) for a range of acceptable depths.

Chapter 4 describes the routine used to determine an appropriate source grid size and depth for regional
lithospheric field models based on aeromagnetic data.
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Figure 12 Lithospheric radial magnetic field values corresponding to the CHAMP measurements used (left). The
respective model predictions at data altitude (middle) are based on 3345 (corresponding to Kg = 38, 600) equivalent
sources at 180 km depth and quadratic regularization with α = 900 nT−2. The resulting radial residuals are given in
the right part of the figure (note the change of scale). The corresponding normalized (by the latitudinal varying data
error) Huber-weighted model residual RMS is 1.48 nT, 1.56 nT and 1.32 nT for the radial, latitudinal and longitudinal
field component, respectively. The derived max, min and mean values for the radial residuals are 394 nT, −428 nT
and 0.79 nT, respectively.

Figure 13 Modelled lithospheric radial magnetic field values at the Earth’s surface on a 0.25 degree grid. The
respective 3345 (corresponding to Kg = 38, 600) equivalent source values (black circles) are located at 100 km
depth and were derived using regional three-component CHAMP vector data and quadratic regularization with
α = 900 nT−2. The colorbar is given in units of nT. Note that this figure is identical to the upper left part of Fig.14.
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3.4 Polar data gap problem

From an engineering and fuel efficiency perspective, it is more favorable to navigate satellites in near-polar
orbits, that involve caps of lacking measurements around the geographic poles, a phenomenon known as
”polar gap” (Sneeuw and Van Gelderen, 1997; Simons and Dahlen, 2006). A satellite crossing the poles
will rapidly be knocked out of its fixed plane due to the bulge of the equator (the Earth’s Bessel function).
This is advantageous as it causes satellites to drift in local time, which is necessary to place satellites in
sun-synchronous orbits.
Potential field models are often based on spherical harmonic (SH) functions and thereby badly effected by
polar gaps, as these are global functions dependent on equally spaced measurements over a sphere. Polar gap
effects on potential fields can be seen in both the spatial and spectral domain (Sneeuw and Van Gelderen,
1997). The latter describes instabilities within the low order and zonal spherical harmonic coefficients.
Polar gaps are defined by a half-angle of |90− i|, where i is the satellite orbit inclination.
Since both geodesy and geomagnetism are potential field disciplines, various approaches for dealing with the
polar gap effect have been investigated within both communities. One attempt to circumvent the problem
has been to fill the satellite data gap with airborne or marine measurements (Koenig et al., 2010).
This thesis always uses measurements from the CHAMP satellite. The corresponding tracks are defined by
a near polar orbit with an inclination of 87.3◦. The resulting polar gap of 2.7◦ is counteracted with radial
synthetic geomagnetic data in the polar regions for θ > 176◦ and θ < 4◦ co-latitude. The respective synthetic
values are derived on a 0.5◦ × 0.5◦ grid using CHAOS-6 model prediction for SH degree n = [16 : 60] at
300 km altitude. The resulting 12, 257 data values represent 2.89% of the total radial data set.
Note that the chosen synthetic data area overlaps with the original measurements, as the latter have a co-
latitudinal range of 2.77− 177.23◦.

Polar gap effect on equivalent source models

In order to investigate the polar gap effect on the equivalent source approach, two synthetic data sets (dPG
and dall) are generated for the north polar region using the CHAOS-6 model up to SH degree n = 15 and
n = 60 for the core field and lithospheric field, respectively. The data altitude is 300 km above the surface and
the data interval is 0.5◦ in both latitudinal and longitudinal directions, resulting in 37,492 three-component
geomagnetic field values for co-latitudes 4◦ < θ < 30◦. Data set dall is additionally characterized by 5768
radial field component values for 4◦ > θ, see Fig. 15. In the latter case, the polar gap values account for
13.3 % of the total radial data set.
Since the synthetic data are assumed noise free, all corresponding error values σ are set to unity.
Using the described data above, two un-regularized models are derived (qall and qPG). The corresponding
source depth and global source amount are 180 km and Kg = 38, 600, respectively. However, since only
regional data values are used, only sources for co-latitudes below 35◦ are taken into account, reducing the
total source amount to K = 3432.
Figure 16 illustrates the model predictions for the radial magnetic field at the Earth’s surface. The right
panel of the figure shows that the model differences are limited to the region 0 to 5◦ co-latitude, which is one
degree larger than the tested polar gap region. It is thus concluded that polar data gaps affect equivalent
source based models only in a region which is 25% larger than the gap area.
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Figure 15 The investigated equivalent source models qall and qPG are both based on 3-component synthetic vector
data for co-latitude values 4◦ < θ < 30◦ (gray area). The first model uses additionally synthetic radial magnetic field
data at polar regions (blue area) for 4◦ > θ. The right part of the figure illustrates the source distribution used for
co-latitudes below 35◦. The latitudinal grid line spacing is 2◦.
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Figure 16 Model predictions (given on a grid of 0.1◦ latitudinal and 2◦ longitudinal spacing) of the radial geomagnetic
field at the Earth’s surface for qall (left) and qPG (middle). The corresponding differences (right) are negligible for
co-latitudes larger than 5 degrees (blue stipled line). The latitudinal grid line spacing is 2◦.
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3.5 Quadratic regularized model results

Using Kg = 38, 600 globally distributed equal area spaced sources at 180 km depth, a wide range of models
with different quadratic regularization (QR) parameters are investigated. As described in section 2.8.1, all
quadratic regularized models share the same initial equivalent source values and initial Huber weights. The
former are set to the values obtained in a well-converged but un-regularized (α = 0) model solution, while
the initial weights are all set to unity. After model convergence (see equation (59)), the derived source values
for the different models are transformed into the spherical harmonic Gauss coefficients gmn and hmn using
equations (40) and (41). The resulting power spectra are given in Fig. 17 and compared to the state-of-the-
art models CM5 (Sabaka et al., 2015), MF7 (Maus et al., 2008; Maus, 2010) and CHAOS-6 (Finlay et al.,
2016a). The figure illustrates clearly the effect of the regularization parameter: increasing values lead to
less power for the short wavelength lithospheric features. But despite the very different behavior in power
spectra, the investigated QR models share very similar global misfits as given in Table 4 with differences
seen mainly in the third and fourth decimal. Here, the different model performances are compared by means
of the Huber -weighted residual mean values and the normalized Huber -weighted root mean square values for
the entire data set as well as separately in polar and non-polar regions. The normalization is reached by
dividing the residuals with the measurement error standard deviations of Fig. 9. The last two rows of the
table give the degree correlation ρ(n) with CHAOS-6 and MF7 for n = 100. Apart from model statistics
and power spectra, the latter offers an additional method to compare between two different lithospheric field
models (having different sets of Gauss coefficients, [gmn , h

m
n ] and [g

′m
n , h

′m
n ]) (Langel and Hinze, 1998, eq.

4.23),

ρ(n) =

∑n
m=0(gmn g

′m
n + hmn h

′m
n )√∑n

m=0[(gmn )2 + (hmn )2]
∑n
m=0[(g′mn )2 + (h′mn )2]

. (89)

According to the model misfit statistics, the quadratic regularized model with α = 30 nT−2 is a good
candidate to represent the measurements as it results in the lowest RMS values and the highest degree
correlation value for n = 100 with respect to both CHAOS-6 and MF7. However, looking at the corresponding
power spectrum of Fig. 17, the model seems to give too much power to SH degrees larger than n > 90 if
compared to MF7, CHAOS-6 and CM5. Differences in power between the latter three models and the
investigated QR models as well as the corresponding degree correlation coefficients are given in Fig. 18.
Whenever ρ ≥ 0.7, models are usually considered to be well correlated (Arkani-Hamed et al., 1994; Sabaka
and Olsen, 2006). This value is reached at approximately n = 105 for the degree correlation between all QR
models and CHAOS-6, and at approximately n = 100 for the degree correlation between all QR models and
MF7. The degree correlations for the different QR models are remarkably similar.
A typical method to determine a reliable regularization parameter is by means of the L-curve (Hansen,
1998), which is given in Fig. 19. The most favorable value for α, providing a balanced treatment of model
complexity and misfit, is found in the vicinity of the corresponding knee-point. The quadratic regularization
models with α = 80 nT−2, 100 nT−2 and 200 nT−2 are closest to the curve’s knee point and are compared
by means of plotting the corresponding radial and intensity field maps at the Earth’s surface and at 300 km
altitude. Respective figures are given in Appendix D.1. Minor model differences can be seen only for the field
maps at the Earth’s surface, where the increase in regularization parameter leads to a decrease in amplitude,
especially in oceanic regions. Compared to the field maps of MF7, CHAOS-6 and CM5, all three QR models
show similar lithospheric structures but of generally lower amplitudes as α is increased.
Based on a combination of the above observations, the quadratic regularized model with α = 80 nT−2 is
selected on balance to be the preferred QR model of this study. The corresponding notation is henceforth
mono-QR. The upper part of Fig. 29 illustrates the corresponding radial field map at the Earth’s surface.
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α (nT−2) 30 50 80 100 200 500

mean ∆Br (nT) -0.0703 -0.0694 -0.0685 -0.0681 -0.0667 -0.0642
RMS ∆Br (-) 1.2883 1.2886 1.2890 1.2892 1.2899 1.2903
RMS ∆Br polar (-) 1.4301 1.4303 1.4304 1.4305 1.4309 1.4300
RMS ∆Br non-polar (-) 1.1814 1.1819 1.1824 1.1827 1.1837 1.1851
mean ∆Bθ (nT) -1.3427 -1.3432 -1.3437 -1.3439 -1.3449 -1.2906
RMS ∆Bθ (-) 1.2627 1.2628 1.2629 1.2630 1.2631 1.2641
RMS ∆Bθ polar (-) 1.3798 1.3798 1.3798 1.3799 1.3799 1.3805
RMS ∆Bθ non-polar (-) 1.1747 1.1748 1.1750 1.1751 1.1753 1.1766
mean ∆Bφ (nT) -0.3625 -0.3623 -0.3622 -0.3621 -0.3617 -0.3614
RMS ∆Bφ (-) 1.2727 1.2729 1.2730 1.2731 1.2734 1.2736
RMS ∆Bφ polar (-) 1.4266 1.4266 1.4267 1.4267 1.4268 1.4263
RMS ∆Bφ non-polar (-) 1.1548 1.1551 1.1554 1.1555 1.1560 1.1568
RMS ∆B (-) 1.2746 1.2748 1.2750 1.2751 1.2755 1.2760
RMS ∆B polar (-) 1.4123 1.4123 1.4124 1.4125 1.4126 1.4124
RMS ∆B non-polar (-) 1.1704 1.1707 1.1710 1.1712 1.1717 1.1729
ρn=100,CHAOS6 (-) 0.7445 0.7332 0.7362 0.7365 0.7343 0.7274
ρn=100,MF7 (-) 0.6872 0.6465 0.6521 0.6536 0.6544 0.6499

Table 4 Huber-weighted residual mean values and Huber-weighted model residual RMS values (normalized by the
latitudinally varying error estimates of Fig. 9) for the different investigated QR models at satellite altitude. Here,

∆B =
√

∆B2
r + ∆B2

θ + ∆B2
φ and the suffixes ”polar” and ”non-polar” represent data of absolute QD latitudes ≥ 55◦

and < 55◦, respectively. The last two rows give the degree correlation with CHAOS-6 and MF7 for n = 100.
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Figure 17 Power spectra for the investigated quadratically regularized (QR) models with different regularization
parameters α, compared to some recent lithospheric field models (CM5: (Sabaka et al., 2015), MF7: (Maus et al.,
2008; Maus, 2010) and CHAOS-6 (Finlay et al., 2016a)). The model with α = 80nT−2, represented by the red line, is
chosen as the preferred model mono-QR. The corresponding lithospheric radial magnetic field at the Earth’s surface
is illustrated in the upper part of Fig.29.
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Figure 19 L-curve for quadratic regularized models obtained with different regularization parameters α. The curve
shows the trad-off between the residual 2-norm and the source values’ 2-norm. The finally preferred QR model is
highlighted in red.
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3.6 Maximum entropy regularized model results

The method of generating lithospheric field models using the maximum entropy regularization (ER) ap-
proach is described in section 2.8.2. In order to demonstrate the effect of the entropy default parameter
ω, Table 5 lists the global misfit statistics of four ER models that share the same regularization parameter
α = 30 nT−2 but differ in ω. Similar to the previous section, the table lists the derived Huber -weighted
residual mean values and the normalized Huber -weighted root mean square values for the entire data set as
well as for polar and non-polar regions. The four ER models result in very similar misfit statistics. However,
it is observed that a decrease in ω reduces the RMS value slightly for all three lithospheric field components.
The corresponding power spectra (Fig. 20) show that small-scale lithospheric features above approximately
SH degree n = 90 gain power for decreasing ω values.
The ER models used for further investigation apply the smallest, largest and mono-QR regularization pa-
rameters of the previous section: α = 30 nT−2, α = 500 nT−2 and α = 80 nT−2. The respective QR solutions
and corresponding weights are used as starting conditions for the ER model derivations. The initial entropy
default parameter ω was set to a large value, and gradually decreased after model convergence. The resulting
minimum values reached for ω are chosen for the final ER models. Figure 21 illustrates the power spectra
for both these ER models and the corresponding starting condition QR models. Since the ER approach
enhances local magnetic field amplitudes, the resulting model predictions for spherical harmonic degrees
larger than n = 70 have higher power than the corresponding QR counterpart using the same regularization
parameter α. Differences in power between the final ER models and the state-of-the-art models MF7 and
CHAOS-6, as well as the corresponding degree correlation coefficients are given in Fig. 22.
Similar to the QR results, the derived ER models reach the correlation level of ρ = 0.7 at approximately
n = 105 and n = 100 with respect to CHAOS-6 and MF7, respectively. Comparisons of the radial and
intensity field maps of these models at the Earth’s surface and at 300 km altitude are given in Appendix
D.2. Here, the model differences seen for the surface projections are mainly caused by the different damping
parameters α, where the ER model with the largest regularization parameter results in the smallest field
amplitudes.
A comparison of misfit statistics for the derived ER models is given in Table 6. Like for the QR results, the
derived ER models fit the measurements to a similar level, having differences mainly in the third decimal.
The final ER-model, henceforth denoted as mono-ER, is chosen to have a starting condition which ensures
the minimum amount of noise mapped into the monopole sources, corresponding to the largest investigated
regularization parameter α = 500 nT−2. The lower part of Fig. 29 illustrates the corresponding radial field
map at the Earth’s surface.
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Figure 20 Power spectra for the maximum entropy regularized (ER) models sharing the same regularization param-
eter α = 30 nT−2 but having different ER specific parameters ω.
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ω (nT ) 0.02 0.04 0.06 0.08

mean ∆Br (nT) -0.0697 -0.0695 -0.0695 -0.0694
RMS ∆Br (-) 1.2863 1.2864 1.2865 1.2865
RMS ∆Br polar (-) 1.4268 1.4269 1.4269 1.4270
RMS ∆Br non-polar (-) 1.1805 1.1807 1.1807 1.1807
mean ∆Bθ (nT) -1.3434 -1.3434 -1.3434 -1.3434
RMS ∆Bθ (-) 1.2625 1.2625 1.2625 1.2625
RMS ∆Bθ polar (-) 1.3793 1.3793 1.3793 1.3794
RMS ∆Bθ non-polar (-) 1.1746 1.1747 1.1747 1.1747
mean ∆Bφ (nT) -0.3625 -0.3625 -0.3625 -0.3625
RMS ∆Bφ (-) 1.2723 1.2724 1.2724 1.2724
RMS ∆Bφ polar (-) 1.4262 1.4262 1.4262 1.4262
RMS ∆Bφ non-polar (-) 1.1545 1.1546 1.1546 1.1547
RMS ∆B (-) 1.2737 1.2738 1.2738 1.2739
RMS ∆B polar (-) 1.4109 1.4109 1.4109 1.4110
RMS ∆B non-polar (-) 1.1699 1.1700 1.1701 1.1701

Table 5 Huber-weighted residual mean values and Huber-weighted model residual RMS values (normalized by the
latitudinally varying error estimates of Fig. 9) for four ER models that share the same regularization parameter

α = 30 nT−2 but differ in ω. Here, ∆B =
√

∆B2
r + ∆B2

θ + ∆B2
φ and the suffixes ”polar” and ”non-polar” represent

data of absolute QD latitudes ≥ 55◦ and < 55◦, respectively.
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Figure 21 Power spectra for the QR models (thin dashed lines) and maximum entropy regularized (ER) models
(thick lines) compared to reference lithospheric field models. Models with the same regularization parameter α are
represented with the same color. The preferred ER model is given in dark blue.
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3.7 L1-norm regularized model results

Instead of regularizing the squared norm of the monopoles or their entropy, this section gives the results
of lithospheric field models which were derived by regularizing the L1-norm of the monopole values. The
investigated regularization parameters are α = 1 nT−1 to 4 nT−1 and the corresponding model statistics are
listed in Table 6. As expected, the model with the lowest damping factor results in the smallest residual
RMS values for all three field components. However, looking at the corresponding power spectrum in Fig.
23 its seems that this model gives too much power to lithospheric signals beyond SH degree n = 90 when
comparing with the models MF7 and CHAOS-6. The radial and intensity field maps of all L1 models can
be found in Appendix D.3.
Figure 24 illustrates the differences in power and degree correlation values between the L1 models and
reference models MF7 and CHAOS-6. The degree correlation curve with respect to CHAOS-6 is very similar
to the investigated QR-models and ER-models of the previous sections, reaching the correlation limit of
ρ = 0.7 at approximately n = 105. However, except for the model using α = 1 nT−1, the L1-models
correlate with MF7 up to slightly higher degrees than the models using the quadratic or maximum entropy
regularization approach. Here, ρ = 0.7 is also given for approximately n = 105.
The final L1 model is chosen to be α = 4 nT−1, which produces the smallest field amplitudes, especially in
oceanic regions, compared to the other L1 models, the smallest average radial and longitudinal residuals and
the largest degree correlation ρn=100 with respect to both MF7 and CHAOS-6.

20 30 40 50 60 70 80 90 100 110 120 130

10
1

10
2

degree n

R
n [n

T
2 ]

 

 
MF7
CHAOS−6
L1 α = 1 nT−1

L1 α = 2 nT−1

L1 α = 3 nT−1

L1 α = 4 nT−1

Figure 23 Power spectra for different investigated L1 regularized models. The final model mono-L1 corresponds to
α = 4 nT−1 and is given in yellow.
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3.8 Model comparisons

Having selected a final candidate for each regularization approach, this section compares the correspond-
ing model results by means of misfit, the power spectrum, degree correlation, global and regional plots,
degree/order matrices and the effective number of degrees of freedom. Note that both global and regional
plots are the direct output of the individual monopole model rather than an approximation based on a trun-
cated SH expansion. Corresponding comparisons with the models MF7, CHAOS-6 and CM5 are collected
in Appendix D.

3.8.1 Differences in power spectra and degree correlations

Figure 25 compares the power spectra of the three selected models for the different regularization approaches.
The corresponding differences with respect to the models MF7 and CHAOS-6, as well as the respective degree
correlation values are given in Fig. 26. The lower right panel of the latter is also given in Fig. 27, along
with the degree correlation between MF7 and the spherical harmonic version of mono-QR, mono-ER, mono-
L1 and CM5. The monopole based models reach the illustrative correlation limit of ρn = 0.7 between
SH degree n = 100 and n = 105. According to this measure, CM5 correlates well with MF7 up to SH
degree n = 108. The light blue and light green lines show the degree correlation for mono-QR/mono-ER
and mono-QR/mono-L1, respectively. Figure 27 shows that the selected models correlate well with each
other with degree correlation values above 0.7 up to SH degree n = 121 (mono-QR/mono-L1) and n = 130
(mono-QR/mono-ER). In fact, the models are very similar with ρn = 1 up to SH degree n = 60. It is also
interesting to see that model mono-QR correlates slightly better with mono-L1 up to SH degree n = 100,
whereafter the model is distinctly more congruent with mono-ER.
Despite the good correlation between the selected models, Fig. 25 shows that model mono-ER decreases
drastically in power beyond SH degree 90. In fact, the power of this model falls below 5 nT2, which is an
order of magnitude smaller compared to mono-QR and mono-L1. This difference in power will be discussed
later in this chapter.
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Figure 25 Power spectra for the final models mono-QR (red), mono-L1 (green) and mono-ER (blue) compared
to some recent lithospheric field models (CM5: (Sabaka et al., 2015), MF7: (Maus et al., 2008; Maus, 2010) and
CHAOS-6 (Finlay et al., 2016a)).
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Figure 27 Degree correlation between MF7 and the spherical harmonic degrees of mono-QR (α = 80 nT−2), mono-
ER (α = 500 nT−2, ω = 0.009 nT), mono-L1 (α = 4 nT−1) and CM5. The light blue and light green lines show the
degree correlation for mono-QR/mono-ER and mono-QR/mono-L1, respectively.

3.8.2 Global model differences

Figure 29 illustrates the radial lithospheric field maps at the Earth’s surface for the three models selected
from the previous sections. Similar figures at 300 km altitude and also for the models MF7, CHAOS-6 and
CM5 are given in Appendix D. These figures show that some suspicious north-south directed features appear
in all models (incl. MF7, CHAOS-6 and CM5), especially in oceanic regions when downward continuing to
the Earth’s surface. The amplification of these small-scale features is possibly due to data contamination
and noise which are not accounted for in the used models for the external and main field subtractions.
Apart from these structures, the large scale features are equally well represented by all models, which is in
good agreement to the similar power spectra behavior for SH degrees n < 65 (see Fig. 25).
From all three final models, mono-ER results in the lowest average radial field amplitudes. Using the
final source amplitudes to predict the surface lithospheric field on a 1◦ × 1◦ grid, the model has a global
average absolute radial field value at the Earth’s surface of 24.41 nT, which corresponds to 8.56 nT in oceanic
regions (topography < −50 m) and 15.85 nT in continental regions (topography ≥ −50 m). For mono-L1, the
corresponding values are 26.27 nT, 9.05 nT and 17.21 nT , respectively. The largest global average absolute
radial field values are represented by the quadratic regularized model mono-QR, with 29.25 nT, 10.23 nT and
19.02 nT being the respective global, oceanic and continental values at the Earth’s surface.
The maximum/minimum values of the radial surface lithospheric field are 521 nT/−852 nT, 540 nT/−900 nT,
535 nT/−1171 nT for mono-QR, mono-ER and mono-L1, respectively. This means that mono-ER has the
lowest average radial field amplitudes but larger extremes than mono-QR.
Figures 30 to 32 give the global differences between the three models for all field components at the Earth’s
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surface. For all model comparisons the differences are globally distributed, with the largest values in the polar
regions and around large local lithospheric field anomalies. Regarding the differences between mono-QR and
mono-ER, different enhancements are also seen in some specific oceanic regions (e.g. in the mid-Atlantic,
north of Brazil and the Indian ocean). For all three model comparisons the differences are most distinct
in the radial component, especially between mono-QR and mono-ER. Differences in the other components
are mostly connected to large amplitude lithospheric field anomalies (like the Bangui anomaly in central
Africa or the Kursk anomaly in Ukraine) and some oceanic regions. Distinct north-south directed features
are mostly pronounced in the quadratic regularized model and especially seen in the longitudinal residuals
of Figs. 30 and 31.
The right panels of Fig. 28 show a zoomed version of the surface radial model differences for the northwest
area of the Indian ocean, as well as the monopole locations projected to the surface of the Earth. The latter
clearly illustrates that the distance between individual sources is smaller than length scales of the observed
model differences, so the exact monopole positions are not responsible for spurious features.
Further regional comparisons between the surface radial field components of the defined models, MF7,
CHAOS-6 and CM5 are given in section 3.8.3.
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Figure 28 Comparison of the radial field component at the Earth’s surface between the three models mono-QR,
mono-ER and mono-L1 for the northwest area of the Indian ocean. The individual model differences are given in the
right panels of the figures. The upper right panel also includes the source locations (black circles).
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Figure 29 Radial lithospheric field component at the Earth’s surface for the preferred models mono-QR (top),
mono-L1 (middle) and mono-ER (bottom).
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Figure 30 Differences between the two models mono-QR and mono-ER for the radial (top), latitudinal (middle) and
longitudinal (bottom) lithospheric field components at the Earth’s surface.

61



Figure 31 Differences between the two models mono-QR and mono-L1 for the radial (top), latitudinal (middle) and
longitudinal (bottom) lithospheric field components at the Earth’s surface.
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Figure 32 Differences between the two models mono-ER and mono-L1 for the radial (top), latitudinal (middle) and
longitudinal (bottom) lithospheric field components at the Earth’s surface.
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Another method of diagnosing the global differences between models mono-QR, mono-ER and mono-L1 is
given in Fig. 33. Here, the corresponding global surface radial magnetic field distributions are illustrated
by means of a histogram using surface grid locations identical to the monopole source locations. Compared
to mono-QR, both mono-ER and mono-L1 predict more field values closer to zero. The respective max-
imum and minimum global radial field values are [534.8 nT,−855.4 nT] (mono-QR), [553.2 nT,−913.0 nT]
(mono-ER), and [557.9 nT,−1189.9 nT] (mono-L1), respectively. Thus, the maximum entropy and L1-norm
approach follow a more Laplacian distribution, as expected for crustal field anomalies (Walker and Jackson,
2000).
Figure 36 compares the models’ surface radial lithospheric magnetic field predictions along a constant longi-
tude crossing the Bangui anomaly. Despite the similar morphology of the anomalies, the smallest amplitudes
in regions with weak magnetic anomalies are represented by mono-ER, whereas mono-L1 shows more detailed
localized structures in these areas.

Figure 33 Histogram comparing the modelled lithospheric radial magnetic field amplitude at the Earth’s surface
predicted by mono-QR (red), mono-ER (blue) and mono-L1 (green). The surface locations used are identical to the
monopole locations. Standard deviation values (STD) are given in the upper part of the figure.

64



3.8.3 Regional model differences

Regional comparisons of the models mono-QR, mono-ER, mono-L1, MF7, CHAOS-6 and CM5 are given in
Figs. 34 to 35 by means of the radial component of the surface lithospheric field over North America and
the Arctic region, respectively. Appendix D.5 shows the corresponding figures for Europe, Australia and the
Antarctic region. The expected characteristic lithospheric features are captured by all models. Differences
are mostly observed for the small scale structures such as the positive anomaly band in north Africa, the
shape of the Kursk anomaly in Ukraine (Fig. 97) and the positive elongated anomaly structures along the
western coast of British Columbia (Fig. 34). In the Arctic region (Fig. 35) models MF7, CHAOS-6 and
CM5 show noticeably more small scale features than models mono-QR, mono-ER and mono-L1, especially
for the area north of Greenland.
Another regional comparison between the models mono-QR, mono-ER and mono-L1 is given in Fig. 36,
which shows the surface radial magnetic field values along a constant longitude crossing the Bangui anomaly
in Africa. Despite the similar morphology of the anomalies, the mono-ER model has smaller field amplitudes
in regions with weak magnetic anomalies compared to mono-QR and mono-L1. In these regions the latter
model predicts more small scale structures, especially north of the Bangui anomaly.
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Figure 34 Radial lithospheric field at the Earth’s surface over North America for the three models mono-QR (top
left), mono-L1 (middle left), mono-ER (bottom left), MF7 up to SH degree n = 133 (top right), CHAOS-6 up to SH
degree n = 120 (middle right) and CM5 up to SH degree n = 120 (bottom right). The color scale is given in nT.
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Figure 35 Radial lithospheric field at the Earth’s surface over the North Pole for the three models mono-QR (top
left), mono-L1 (middle left), mono-ER (bottom left), MF7 up to SH degree n = 133 (top right), CHAOS-6 up to SH
degree n = 120 (middle right) and CM5 up to SH degree n = 120 (bottom right). The color scale is given in nT.
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Figure 36 Model prediction for the radial lithospheric magnetic field at the Earth’s surface (on a 0.5◦ × 0.5◦ grid)
along an orbital profile at longitude φ = 17.25◦ crossing the Bangui magnetic anomaly (inserted figure, surface radial
lithospheric field of model mono-QR). The result is given for MF7 (black), mono-QR (red), mono-ER (blue) and
mono-L1 (green) models.

3.8.4 Comparison of model residuals

Despite the differences in both power spectra and field maps discussed above, models mono-QR, mono-ER
and mono-L1 fit the measurements to a very similar level, as given in Table 6. The table shows also that,
except for the non-polar RMS values of the latitudinal residuals, all investigated models fit the observations
used better than MF7, CHAOS-6 and CM5. This is in agreement with the expectations, as the latter three
models use either additional or other data than the models of this thesis.
Similar statistics are also displayed by the model residuals: only the corresponding values of model mono-QR
are shown in Fig. 37. The residuals are most distinctive in polar regions (absolute QD latitudes > 50◦),
which is assumed to be due to unmodelled signals from the polar electrojet. Ring-like structures at high lat-
itudes are also seen in the global maps of the residuals for mono-QR, mono-ER and mono-L1 (see Appendix
D, Figs. 74 to 78, Figs. 84 to 86, and Figs. 91 to 93, respectively). Also the observed shift of the radial
residuals in Fig. 37 towards positive values below QD −70 ◦, and towards negative values above QD 70 ◦, is
an indication for the polar electrojet. The corresponding westward direction (during night times) enhances
and reduces the radial field component in the northern and southern hemisphere, respectively.
Additionally, the global radial residual maps show for all models (incl. MF7, CHAOS-6 and CM5) a distinct
pattern along the equator, indicating unmodelled signals still present in the data set.
Figure 38 shows a histogram of the radial residuals between the CHAMP observations and the model pre-
dictions of mono-QR. The corresponding distribution is centered on zero, with a Huber weighted residual
root-mean-square value of 1.66 nT (see equation (85)).
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Figure 37 Residuals for the final quadratic regularized model mono-QR.

Figure 38 Radial residual histogram of model mono-QR.
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3.8.5 Differences in normalized Gauss coefficients

Another way of illustrating the differences between the individual models is illustrated in Fig. 39. Here, the
relative differences between two models with corresponding Gauss coefficients [gmn , h

m
n ] and [g

′m
n , h

′m
n ] are

considered in a degree versus order matrix, with elements defined by

S(n,m) = 100 · gmn − g
′m
n√

1
(2n+1)

∑n
m=0[(gm∗n )2 + (hm∗n )2]

, (90)

and similarly for the corresponding hmn coefficients. The coefficient differences are normalized with respect
to the mean spectral amplitude of a reference model [gm∗n , hm∗n ] (Olsen et al., 2005), eq. 5.3), which is defined
to be MF7 for all degree/order plots of this thesis. Note that the factor 100 in equation (90) indicates that
the normalized coefficient differences are given in %.
Figure 39 shows that the model differences are most notable above SH degree 60, and up to SH degree
80 the differences are almost absent for orders larger than 50. This is in good agreement with the power
spectrum and degree correlation results of section 3.8.1. Additionally, interesting vertical stripes are observed
especially between degrees 60 and 95, which are assumed to be associated with the observed north–south
directed structures in Fig. 29, especially for model-QR.
Degree/order plots showing the differences between mono-QR, mono-ER, mono-L1 and the models MF7,
CHAOS-6 and CM5 are given in Appendix D.4.

3.8.6 Model resolution and the effective number of degrees of freedom

An important method of quantitatively assessing inversion results is to compute the model resolution matrix
R, also known as the information density matrix. This represents the mapping between the estimated and
true model parameters. Thus, if R = I the predicted data match the observations perfectly.
For a quadratic regularization, the matrix R takes the form (e.g. Bloxham et al., 1989; Menke, 2012)

RQR = (GTWG + αI)−1GTWG. (91)

The corresponding version for the L1 approach and the linearized approximation for the maximum entropy
approach (assuming that αγqER − 4αωβ � 2GTWd) are

RL1 = (GTWG + αT)−1GTWG (92)

RER = (2GTWG + αγ)−12GTWG, (93)

respectively. The resolution of a given regularized model can be described by means of the effective number
of degrees of freedom, which corresponds to the trace of the respective resolution matrix. The number of
degrees of freedom was found to be 10 819, 15 337 and 8 668 for the models mono-QR, mono-L1 and mono-
ER, respectively. This means that model mono-ER requires almost 20% fewer effective degrees of freedom
compared to mono-QR, and almost 40% fewer effective degrees of freedom compared to mono-L1, in order
to achieve the same level of fit to the observations. The remaining degrees of freedom are controlled by the
model regularization.
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Figure 39 Normalized coefficient differences between mono-QR, mono-ER and mono-L1 (left row) and between
mono-QR and the models MF7, CM5 and CHAOS-6 (right row).
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3.9 Summary of global models

Global lithospheric magnetic field models were generated using an equal area grid of 38,600 equivalent point
sources located at 180 km depth below the Earth’s surface.
The generated model solutions were based on iterative least squares, with Huber weighting of misfit values
and latitude-dependent data uncertainties implemented for all three vector field components at all latitudes.
The approach was tested on lithospheric field measurements from CHAMP observations for the period
01/01/2009 to 02/09/2010. In order to minimize the influence of disturbed satellite tracks and external field
signals, data were selected for e.g. geomagnetic quiet time conditions, dark regions, small hourly RC-index
variations and model residuals below 100 nT.
Equivalent source models were produced by regularizing either the quadratic norm (QR), the maximum
entropy (ER, which is an information-based measure of complexity), or the L1-norm (L1) of the model pa-
rameters. The determination of the final model candidates and the corresponding regularization parameters
was based on the Huber-weighted residuals, the corresponding normalized root mean square values, power
spectrum comparisons and global maps of the lithospheric field at the Earth’s surface. Note that an indirect
regularization is also given by the chosen amount of sources and the corresponding depth below the Earth’s
surface, as decreasing source densities and increasing depth values result in damping of the small-scale litho-
spheric features.
The final selected models mono-QR (α = 80 nT−2), mono-ER (α = 500 nT−2, ω = 0.009 nT) and mono-L1
(α = 4 nT−1) have been compared to each other and the state-of-the-art models MF7, CHAOS-6 and CM5
in terms of residuals and by means of radial magnetic field values globally and locally at the Earth’s surface.
The models mono-QR, mono-ER and mono-L1 agree very well with each other up to SH degree 60, where-
upon the differences increase gradually with degree based on the various regularization parameters. However,
the respective degree correlation values remain above the correlation limit of ρn = 0.7 up to at least SH
degree 120. Additionally, the models correlate satisfactorily with MF7 and CHAOS-6 up to approximately
SH degree n = 100 and n = 105, respectively.
The similarity of the models was also exhibited in the derived model residuals and corresponding statistics.
Despite the fact that all three models achieve the same level of global fit to the observations, both the ER
and L1 approach produce models which are more congruent with geological expectations: the correspond-
ing lithospheric magnetic fields have large amplitudes locally where there are strong anomalies, and weaker
amplitudes in oceanic regions.
From all investigated models, mono-ER uses the largest regularization parameter, which results in the
strongest damping of the small-scale lithospheric signals. The corresponding global and regional maps are
also characterized by a distinctly lower field complexity compared to the other model results. It is also
interesting to notice that mono-ER has a much smaller number of degrees of freedom than mono-QR and
mono-L1, despite the same level of fit to the data.

The quality of the derived field predictions is dependent on the used data and the adequate removal of
non-lithospheric field signals. Thus, increasing knowledge of the external source behavior and the temporal
and spatial variations of the core field, as well as the use of more recent Swarm satellite measurements and
magnetic gradient data will increase both the data quality and the modeled lithospheric field resolution
remarkably. The latter has been demonstrated by Olsen et al. (2017), who used a similar equivalent point
source routine and L1-norm regularization for generating a high resolution map of the global lithospheric field
based on combined along-track differences from CHAMP and across-track differences from Swarm. Further
model enhancements are expected once Swarm reaches an altitude below 350 km.
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4 Regional lithospheric magnetic field models of aeromagnetic
data using equivalent point sources

The history of aeromagnetic surveys reaches back to the first decades of the 1900s where different mag-
netometers were invented for the use of airborne surveys (Reford and Sumner, 1964). The corresponding
measurements reveal information for geologic mapping, the depth to magnetic basement rocks in sedimentary
basins (important for oil surveys), and subsurface susceptibilities and dips (important for mineral surveys)
(Reford and Sumner, 1964). Compared to other geophysical approaches, aeromagnetic measurements are
less time consuming and more cost effective per unit area explored (Hamoudi et al., 2011). In that sense it
is a favorable technique to use in the early stages of finding interesting exploration areas, after which other
methods are applied for more detailed investigations (Reford and Sumner, 1964; Grant, 1985).
This chapter focuses on the generation of regional lithospheric field models based on equivalent point sources
using the inversion scheme of chapter 2.3. The derived models are based on three aeromagnetic surveys from
offshore Norway, kindly provided by the Norwegian Geological Survey (NGU). The derived model resolution
is highly dependent on the chosen equivalent source density and depth. Additional investigations concern
the influence of regularization and the models’ ability for upward and downward continuation. The latter is
a crucial criterion for using the equivalent source application for directional drilling, which will be discussed
in the final part of this chapter.

4.1 Aeromagnetic data from offshore Norway

Regional lithospheric field models based on equivalent point sources are investigated using aeromagnetic
survey data kindly provided by NGU. All provided data are corrected by NGU for aircraft effects, main
field contributions and temporal field variations. The corresponding data processing routines have been
performed by NGU applying statistical and micro-levelling algorithms from Geosoft OASIS Montaj (Geosoft
2010a, 2010; Geosoft 2010b, 2010). A general introduction to these routines is given in Appendix A.
The used surveys were acquired between 1971 and 1990 and differ in size, line spacing, and processed data
elevation. Table 7 lists the corresponding survey information and the covered survey area is illustrated in
Fig. 40.
NGU-74-75 is the oldest data set and covers the Norwegian continental shelf in the Norwegian North Sea.
This data set is the largest of all three provided surveys, comprising of 42 000 km survey length. The survey
was flown at approximately 280 m altitude and with line spacings ranging between 1 km and 7 km.
Between 1971 and 1973, Fairey has performed several aeromagnetic surveys covering the Viking Graben
(Fairey-71a) and the Shetland Basin (Fairey-71b, Fairey-72, Fairey-73). This thesis uses the former data set,
containing 11 000 km line volume. The corresponding flight altitude ranges between 300 m and 500 m.
Similar to Fairey-71a, the Viking Aeromagnetic Survey 1993 (Viking-93) covers the northern part of the
Viking Graben. This survey was flown between April and June 1993 with a mean altitude of about 240 m
and maximal line spacings and tie-line spacings of 2 km and 5 km, respectively.
All provided survey data contain lithospheric intensity values given in geodetic coordinates with elevations
relative to the mean sea level. These orthometric heights are transformed into the WGS84 ellipsoidal
(geodetic) heights using the ellipsoid egm-84 and the MATLAB R© function geoid height.m. The equivalent
source modelling scheme uses the corresponding geocentric coordinates r = (r, θ, φ).
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Fairey-71a NGU-74-75 Viking-93

Year 1971 1974-1975 1993
Contractor NGU NGU NGU
Operator NGU Fairey NGU
Flight altitude [m] 300-500 333/239/279∗ 405/36/238∗

Line spacing [km] 2 1-7 0.5-2 (1.25-5)4

Line volume [km] 11,100 42,000 28,000
Subtracted IGRF model DGRF-1975 IGRF-1975 DGRF-1990
Processed data altitude [m]? 300 300 150
Reference Åm (1973); Olesen et al. (1997, 2010) Olesen et al. (1997, 2010) Smethurst (2000),

Viking-93

Table 7 Aeromagnetic survey data applied for the present study.
∗ Flight altitudes are given in max/min/mean values.
? Processed data altitude values are given in geodetic coordinates above sea level.
4 Tie-line spacings are given in parenthesis.
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Figure 40 Aeromagnetic intensity data (every 10th point), displayed in geocentric coordinates, corresponding to the
surveys Fairey-71a, NGU-74-75 and Viking-93. Note that the data elevations differ between the individual surveys as
indicated in Table 7. Each survey is emphasized by a certain background color (red = Viking-93, green = Fairey-71a
and yellow = NGU-74-75).
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4.2 Equivalent source distribution for regional lithospheric field models

Compared to satellite data, airborne and marine magnetic measurements are closer to the respective sources
and provide more information on the small-scale features of the lithospheric field. Producing corresponding
high resolution regional lithospheric field models based on equivalent sources thus requires a larger grid
resolution than found for the global models in section 3.3.
Similar to the global models of chapter 3.3, the regional lithospheric field models of this thesis are based
on equal area distributed equivalent point sources located at a certain depth below the Earth’s surface.
Different source grid sizes are tested for a range of source depth values and corresponding un-regularized
Huber -weighted equivalent source models are derived for each of the aeromagnetic surveys (corresponding
results are not given here). Table 8 gives the respective grid specifications. Note that the used data error
values are defined to be unity instead of being latitude dependent.
Compared to models based on globally distributed data, not all sources given in the second column are
applied for regional model investigations. Since aeromagnetic surveys only cover a fracture of the globe, only
sources in the survey vicinity are used for the respective model derivations. Projecting all sources and data
points to the Earth’s surface, only sources for which the distance to the closest data point does not exceed
20 km are approved for the model inversions, see Fig. 41. The resulting source amount for the individual
surveys is given in the last columns of the table.
The positive correlation between grid resolution and a model’s ability to represent the measurements stops
at a certain level. This level can be found based on the investigated model’s residual 2-norm, correlation
coefficient and residual RMS. A further increase in grid resolution will not improve the corresponding values
or can even cause model convergence problems.
The preferred grid resolution should be large enough for deriving reasonable models with statistical parame-
ters within an acceptable range, and small enough for minimizing calculation time and convergence problems.
Having this in mind, the maximal possible source amount for the individual surveys (highlighted in bold in
the last three columns of Table 8) are used for further model investigations.

L # global Surface source distance # Local sources (K)
sources (Kg) [km] Fairey-71a NGU-74 Viking-93

1 500000 31.94 43 45 44
2 1000000 22.58 93 91 87
3 1500000 18.44 136 144 134
4 2000000 15.97 172 184 185
5 2500000 14.28 226 237 224
6 3000000 13.04 270 275 264
7 3500000 12.07 313 325 305
14 7000000 8.53 644 608
16 8000000 7.98 708

Table 8 Investigated grid sizes L and corresponding regional source amount K for the individual aeromagnetic
survey models. Bold values correspond to the chosen amount of sources for further model investigations. The surface

distance between two sources (third column) is estimated with
√

4πa2

Kg
, where a = 6371.2km is the Earth’s mean

radius and Kg represents the global amount of sources (second column).

4.2.1 Source depth estimate from Metropolis-Hastings algorithm

After choosing the source grid density, the next step prior to model inversion is to determine an appropriate
source depth. For the global field models of section 3.3.2, the preferred source depth was subjectively chosen
since the major model features were highly dependent on the used regularization type and corresponding
parameter. However, for the used regional surveys it yields that regularization does not have the same effect
on the final model predictions of the lithospheric scalar field. In fact, regional model regularization is mainly
necessary for generating realistic field components for upward and downward continuation (see Appendix
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Figure 41 Global source distribution (blue) and corresponding source locations (red) used for generating lithospheric
field models of the aeromagnetic survey (grey) Fairey-71a (left), NGU-74-75 (middle) and Viking-93 (right).

E.1). But apart from the vector field predictions, the source depth, rather than regularization, plays the key
role for defining the level of model accuracy.
This thesis uses a Monte Carlo Metropolis Hastings algorithm for nominating the source depth of regional
lithospheric field models based on aeromagnetic data. The corresponding code is easy to implement but
expensive in calculation time. In order to reduce the calculation time of the algorithm, the largest possible
source depth values need to be determined for local field models of a given aeromagnetic survey. For this
purpose, un-regularized inversions are performed using the maximal source densities of Table 8 and source
depth values between 0 and 100 km. Figure 42 illustrates the corresponding Euclidean norm of the model
residuals at data altitude. For the surveys Fairey-71a, NGU-74-75 and Viking-93 no model convergence
could be reached beyond 65 km, 45 km and 40 km, respectively.
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Figure 42 Un-regularized model residual 2-norm at data altitude corresponding to the aeromagnetic surveys of Table
7. The different source grid resolutions are indicated in the legend and Table 8. The black colored circles represent
the maximum allowed depth values for model convergence and for the Metropolis Hastings algorithm. Note that the
minimum investigated source depth is 10 km as the geocentric data altitude is around 9 km, see Table 9.
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The used source depth is now determined by performing 560 (due to expensive computations) un-regularized
inversion runs with depth values randomly chosen by a Metropolis Hastings algorithm. The maximum
allowed source depth values are as indicated in Fig. 42
For a given run ζ (for ζ = 1, ..., 560) the depth value is derived as follows,

δζ = δorgζ−1 + β∆δ (94)

where ∆δ = 20 km represents the maximum perturbation in depth, δorg is the initial depth value derived in
the previous run and β = 1. For ζ = 1 the initial depth value is defined to δorg0 = 10 km.
The probability for the chosen source depth value is defined to be based on the corresponding Euclidean
norm of the model residuals ν(δζ),

pacc,ζ =

{
e−(ν(δζ)−ν(δorgζ−1)), for ν(δζ) > ν(δorgζ−1)

1, otherwise
(95)

Depending on pacc,ζ , the depth candidate δζ is either accepted or rejected for the next inversion run,

δorgζ =

{
δζ , for γ 6 pacc,ζ

δorgζ−1, otherwise.
(96)

Here, γ is a uniformly distributed random number in the interval (0,1).
Using the residual 2-norm as statistical parameter is an individual choice. It is assumed that the derived
source depth values may differ when applying another statistical parameter as basis for the model selection
routine.
Figure 43 shows the proposed and accepted source depth values for the three NGU survey models. The
probability density functions (PDF) for the corresponding normal distributions are given in the lower right
part of the figure. The respective peak values are found for 23 km (Fairey-71a), 37 km (NGU-74-75) and
39 km (Viking-93). Please note, that the latter value is only based on a fraction of the original survey area
(θ > 61.5◦ and φ < 3◦) due to heavy computation time.
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Figure 43 Perturbated (grey) and accepted (black) depth values due to the Metropolis Hastings algorithm for 560
un-regularized model inversions of the Fairey-71a (upper left), NGU-74-75 (upper right) and Viking-93 (lower left)
surveys. The corresponding source grid sizes are L = 6, L = 7 and L = 14, respectively. The initial depth is 10 km
and maximum allowed perturbation in depth is ∆δ = 20 km. The lower right part of the figure gives the PDF
for the normal distributions corresponding to the accepted source depth values for the surveys Fairey-71a (green),
NGU-74-75 (yellow) and Viking-93 (red). The corresponding peaks are derived for 23 km, 37 km and 39 km source
depth, respectively.
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4.2.2 Model regularization

Figure 44 illustrates the quadratic regularized L-curve for the different aeromagnetic surveys using the source
depth values defined in the previous section. Corresponding model statistics are given in Tables 20, 21 and
22 in Appendix E.1. These latter two tables demonstrate that regularization has no major effect on the
field intensity predictions, but is crucial for the derivation of realistic values for the vector components when
performing upward or downward continuation.
For the survey Fairey-71a, all investigated quadratic regularization parameters result in stable conditions for
upward and downward continuation. The preferred value is thus defined to α = 400 nT−2, which is close to
the knee-point of the respective L-curve.
For survey Viking-93 it is found that the small-scale spatial features along the coastline cannot be captured
by the chosen source density. This results in large residual values and unrealistic vector field predictions in
these regions. By generating these model prediction maps for various altitudes using different regularization
parameters (corresponding results are not given here), the preferred damping for survey Viking-93 is defined
to α = 600 nT−2. This value is larger than the knee-point of the corresponding L-curve, thus giving more
importance to the model norm than the residuals.
Despite the well shaped L-curve of Fig. 44, no suitable regularization parameter value was found for survey
NGU-74-75. Visual inspection of vector field maps revealed that a regularization parameter of minimum α =
2000 nT−2 is necessary to ensure reasonable field predictions for both upward and downward continuation,
therefore this value will be used in the following.
Table 9 summarizes the derived model details.

Fairey-71a NGU-74-75 Viking-93

# sources 313 644 708
# Field intensity data 89,186 57,270 294,910
Data altitude [km]?,∗ -8.9 -8.5 -9.3
Max. source depth [km]? 65 45 40
Model source depth [km]? 23 37 39
αL2 [nT−2] 400 2000 600
IGRF4 DGRF-1970 DGRF-1975 DGRF-1990

Table 9 Defined source grid, depth and regularization parameters for the model inversions of individual aeromagnetic
surveys.
4 IGRF version used for the core field predictions necessary for generating the scalar version of the Greens’ matrix
Gs (see equation 84). The IGRF versions are not necessarily identical to the date of data collection, but have been

used to generate the processed data provided by NGU.
? Both data and source depth values are with respect to the Earth’s mean surface with radius 6371.2 km.
∗ Mean value for geocentric data altitude.
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Figure 44 L-curve for quadratic regularized models using aeromagnetic surveys Fairey-71a, NGU-74-75 and Viking-
93 and the source depth values of 23 km, 37 km, and 39 km, respectively. Corresponding model statistics are given in
Appendix E.1.
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4.3 Regional model results

Using the above described regularization parameters, Figs. 45 to 47 illustrate the field predictions and
corresponding residuals for the three surveys.
The absolute residual values are typically around 5 nT. For especially the surveys NGU-74-75 and Viking-93
the figures show clearly that the chosen source distances are too large in order to capture the detailed field
structures along the coastline. These areas are characterized by absolute residual values beyond 50 nT.
Both the models for surveys Fairey-71a and Viking-93 fit the observations with residual RMS values of about
2.3 nT. However, for the oldest data set NGU-74-75 it seems that the small source density value compared
to the coastal field structures and possible noise in the data which has not been accounted for, result in a
residual RMS value as large as 9.5 nT.
The equivalent source method does not deal well with regional small-scale structures. Higher source grid
densities are required to solve this problem. This, however, can have large effects on the computation time
or result in memory issues.
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Figure 45 Model predictions of the lithospheric field intensity at data locations (left) and corresponding residuals
(right) for Fairey-71a. The used quadratic regularization parameter, source amount and favorite depth is α =
400 nT−2, 313 (black dots) and 23 km, respectively. The weighted residual RMS is of 2.29 nT. The corresponding
max, min and mean values of the residuals are 115.99 nT, −120.84 nT and 0.09 nT, respectively. Using initial source
values of zero nT, model convergence was reached after 12 iterations.

4.4 Downward continuation

Having determined the source values, the equivalent source approach allows for upward and downward
continuation, predicting the geomagnetic field at any location above the source grid.
Applying the model results of survey Fairey-71a for grid size L = 7 and a source depth of 23 km, Fig. 48
illustrates the corresponding intensity predictions for four different depth values below the Earth’s surface,
utilizing the core field values from DGRF-1970 for degrees n = 1 : 10. The figure shows smooth field
variations with depth.
Even if the original data does only provide information of the field intensity, model predictions can be given
for all three vector components using equation 29. This is demonstrated in Fig. 49, which illustrates all
vector components and field intensity at 10 km depth based on the quadratic regularized model result using
α = 400 nT−2, a grid size of L = 7 and a source depth of 30 km. Compared to Fig. 48, these model
predictions are not given at data locations but rather on a 0.01◦ × 0.02◦ grid. Areas outside the original
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Figure 46 Model predictions of the lithospheric field intensity at data locations (left) and corresponding residuals
(right) for NGU-74-75. The used quadratic regularization parameter, source amount and favorite depth is α =
2000 nT−2, 644 (black dots) and 37 km, respectively. The weighted residual RMS is of 9.55 nT. The corresponding
max, min and mean values of the residuals are 1125.6 nT, −411.22 nT and 4.47 nT, respectively. Using initial source
values of zero nT, model convergence was reached after 18 iterations.

survey coverage are not shown, as corresponding model predictions are non-reliable.
Appendix E.2 gives the corresponding results for the remaining surveys NGU-74-75 and Viking-93.
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Figure 47 Model predictions of the lithospheric field intensity at data locations (top) and corresponding residuals
(bottom) for Viking-93. The used quadratic regularization parameter, source amount and favorite depth is α =
600 nT−2, 708 (black dots) and 39 km, respectively. The weighted residual RMS is of 2.25 nT. The corresponding
max, min and mean values of the residuals are 301.5 nT, −334.35 nT and 0.27 nT, respectively. Using initial source
values of zero nT, model convergence was reached after 12 iterations.
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Figure 48 Model estimation of the Fairey-71a lithospheric field intensity for different depth values below the Earth’s
surface a = 6371.2 km. The corresponding model values are based on the quadratic regularized (α = 400 nT−2) model
results with L = 7 and a source depth of 23 km.
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Figure 49 Fairey-71a model estimations of the three lithospheric field components and the field intensity at 10 km
depth below the Earth’s surface a = 6371.2 km. The corresponding model values are based on the quadratic reg-
ularized (α = 400 nT−2) results with L = 7 and a source depth of 23 km. Bt and Bp correspond to Bθ and Bφ,
respectively.
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4.5 Comparison of regional lithospheric magnetic field models for directional
surveying using an equivalent source based DTU model and BGGM2016:
A case study at one specific Ekofisk well

This final section of the chapter demonstrates the applicability of the equivalent source method for direc-
tional wellbore surveying. For that purpose, DTU model predictions for the total field intensity, magnetic
declination and inclination are compared to corresponding values from the British Geological Survey (BGS)
industry standard BGGM2016 model at one specific well of the Ekofisk field. The DTU model uses predic-
tions from the CHAOS-6 geomagnetic field model (Finlay et al., 2016a) for the large-scale field, together with
predictions from an equivalent source model, derived from aeromagnetic data, for the local crustal signal.
The application of actual geomagnetic well data was kindly authorized by ConocoPhillips. The provided
well locations are confidential and have been anonymized in this section.
The use of DTU’s global geomagnetic reference field model is described in section 4.5.1. Sections 4.5.2 and
4.5.3 present the aeromagnetic data and resulting equivalent source model for the local lithospheric field
predictions. The final model predictions for the given Ekofisk well are presented in section 4.5.4, along with
comparisons to respective model predictions from BGGM2016. Section 4.5.6 summarizes the results in the
same form as the BGS predictions provided to ConocoPhillips by Halliburton.

4.5.1 DTU global geomagnetic reference model, CHAOS-x

The global geomagnetic reference field Bmain is based on the latest version of the CHAOS-x field model,
CHAOS-6 (Finlay et al., 2016a). This global geomagnetic field model applies ground observatory data
as well as satellite data from both Ørsted, SAC-C, CHAMP and Swarm (from 26 November 2013 to 30
March 2016). An additional feature is the inclusion of along-track field differences for both CHAMP and
Swarm as well as east-west gradients derived from Swarm Alpha and Swarm Charlie. For the present case,
both CHAOS-6 time-dependent internal field for spherical harmonic degrees 1-20, its static internal field for
spherical harmonic degrees 21-110 and its external field prediction for the daily mean value of the 1st of
May 2016 are used. Fully advantage cannot be taken of the CHAOS-6 external field model (with hourly
resolution) and no estimate of the solar-quiet diurnal variation can be included (despite this being available
within the extended CHAOS-x framework) due to the lack of time-stamp associated with the provided dates
and locations.

4.5.2 Aeromagnetic data from the specific Ekofisk well

The local crustal field model is based on final processed geomagnetic intensity observations (FMAGAN ) from
the aeromagnetic surveys CGAM-95 and HDCG-95 (MAGAN). The respective survey area is located in the
North Sea, along the British-Norwegian off-shore border line, see Fig.50. Data were acquired between June
and July 1995 and provided by TGS-NOPEC Geophysical Company ASA (TGS). This data set was recom-
mended as the most appropriate by ConocoPhillips and had all the required location and processing data
available. The altitude of the processed gridded data used is 400 ft above mean sea level (MSL). Similar
to section 4.1, this orthometric height and the corresponding locations were transformed into geocentric
coordinates r = (r, θ, φ) for the modelling scheme.

As part of the original data processing, the large-scale internal field signal was removed from the data using
IGRF-90 for spherical harmonic degrees n = 1:10. This reference field is hereafter denoted as Bmain90(r).
FMAGAN are the data, reduced using Bmain90(r), provided by ConocoPhillips. In addition, for consistency
with the CHAOS-6 model, a prediction for the scalar component of the large scale crustal field is removed
from the data. The respective values are denoted A(r) and obtained from the CHAOS-6 vector field for SH
degrees n = 11:110, A(r), projected onto the IGRF-90 main field direction (see equation 83),

A(r) =
Bmain90(r) ·A(r)

|Bmain90(r)|
Fcrust(r) = FMAGAN (r)−A(r)

(97)

Figure 51 illustrates the resulting crustal field intensity values Fcrust(r) that are used as input to the equiv-
alent source modelling scheme.
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Figure 50 Geodetic coordinates of the MAGAN
survey (black) and Ekofisk field (red).
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Figure 51 Aeromagnetic intensity data (Fcrust) used in this study, displayed in geocentric coordinates. Large scale
internal field signals for SH degrees n = 11:110 have been subtracted using CHAOS-6 model predictions aligned with
the IGRF-90 main field. The green circle represents the approximate location of the specific Ekofisk well.

4.5.3 Equivalent source model of the local crustal field

In order to minimize wellbore navigation errors due to spatial variations of the nearby geology, local crustal
field estimations based on marine- and/or aeromagnetic data are often included in the final magnetic field pre-
dictions for a directional wellbore survey. The mathematical method used here corresponds to the equivalent
source based routine already described in the previous sections of this chapter. More details regarding the
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derivation of the used source amount (K = 285), depth (53 km below the Earth’s surface) and regularization
(quadratic regularization parameter α = 300 nT−2) are given in Appendix F. The appendix demonstrates
also the derived model’s capability for stable downward continuation, which is the basis for geomagnetic field
predictions at different depth values at the given Ekofisk well.
Figure 52 illustrates the derived model predictions at data locations.
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Figure 52 Quadratic regularized model values based on equivalent sources. The applied regularization parameter,
source depth and source amount are α = 300 nT−2, 53 km and 285, respectively. Black circles indicate the location
for the equivalent sources. The max, min and mean values for the corresponding residuals are 27.37 nT, −32.94 nT
and 0.03 nT, respectively. The Huber weighted residual rms is 1.62 nT.

4.5.4 Detailed results at the specific Ekofisk well

In this section the geomagnetic field predictions from the DTU model and the BGS model (BGGM2016
with IFR) are compared for various depth values of the well at the Ekofisk field. Note that the depth values
used are given relative to the geocentric coordinate system, and are thus not identical to true vertical depth
(TVD), which refers to the mean sea level. The predictions of the BGS model and DTU model are listed in
Table 10 and Table 11, respectively. In-field referencing (IFR) values of the latter are based on the combined
magnetic field components from the CHAOS-6 large-scale geomagnetic model Bmain and the equivalent
source based model of the local lithospheric field Bloc. Given a spherical polar coordinate system, the IFR
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components for the total field intensity F IFR, declination D and inclination I are

BIFR = (BIFRr , BIFRθ , BIFRφ ) = (Bmainr +Blocr , Bmainθ +Blocθ , Bmainφ +Blocφ )

F IFR =
√

(BIFRr )2 + (BIFRθ )2 + (BIFRφ )2

DIFR = tan−1
( BIFRφ

−BIFRθ

)
IIFR = tan−1

( −BIFRr√
(BIFRθ )2 + (BIFRφ )2

)
.

(98)

Differences in the combined IFR baseline values are illustrated in Fig.53 and corresponding background val-
ues are listed in Table 12. Care should be taken when comparing crustal models due to possible differences
in the corresponding reference values.
For all tables in this section, the first column refers to a specific location along the well path with increasing
values indicating increasing depths.

Hole pt Main Field Values (BGS) Crustal Field Values IFR Baseline Values
Decl. Incl. Intensity Decl. Incl. Intensity Decl. Incl. Intensity
[deg] [deg] [nT] [deg] [deg] [nT] [deg] [deg] [nT]

0 0.114 70.365 50149.6 -0.010 -0.005 -2.1 0.104 70.360 50147.5
1 0.115 70.365 50160.4 -0.016 -0.005 -1.7 0.099 70.360 50158.7
2 0.116 70.365 50165.6 -0.019 -0.005 -1.6 0.097 70.360 50164.0
3 0.117 70.365 50170.9 -0.018 -0.003 0.9 0.099 70.362 50171.8
4 0.118 70.364 50177.4 -0.024 -0.003 0.9 0.094 70.361 50178.3
5 0.119 70.362 50183.2 -0.030 -0.003 0.9 0.089 70.359 50184.1
6 0.120 70.360 50190.5 -0.038 -0.002 1.1 0.082 70.358 50191.6
7 0.121 70.358 50199.0 -0.047 -0.001 1.3 0.074 70.357 50200.3
8 0.122 70.356 50207.1 -0.057 0.001 1.5 0.065 70.357 50208.6
9 0.123 70.353 50213.0 -0.067 0.002 1.3 0.056 70.355 50214.3
10 0.124 70.352 50214.6 -0.071 0.003 1.1 0.053 70.355 50215.7
11 0.124 70.350 50214.4 -0.073 0.004 0.7 0.051 70.354 50215.1
12 0.124 70.349 50214.0 -0.074 0.005 0.7 0.050 70.354 50214.7
13 0.124 70.347 50213.6 -0.076 0.006 0.7 0.048 70.353 50214.3

Table 10 IFR values at one specific Ekofisk well. Corresponding main field and crustal field values were estimated
using the BGGM2016 predictions for 01-05-2016.
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Hole pt Main Field Values (DTU) Crustal Field Values IFR Baseline Values
Decl. Incl. Intensity Decl. Incl. Intensity Decl. Incl. Intensity
[deg] [deg] [nT] [deg] [deg] [nT] [deg] [deg] [nT]

0 0.122 70.561 50159.4 0.120 0.128 -77.1 0.242 70.689 50082.3
1 0.123 70.562 50170.4 0.114 0.127 -77.6 0.237 70.689 50092.8
2 0.123 70.562 50175.7 0.111 0.127 -78.0 0.234 70.689 50097.7
3 0.124 70.562 50181.1 0.107 0.127 -78.6 0.232 70.689 50102.5
4 0.126 70.561 50187.8 0.102 0.127 -79.7 0.228 70.688 50108.1
5 0.127 70.559 50193.8 0.098 0.128 -81.0 0.225 70.687 50112.8
6 0.128 70.557 50201.3 0.092 0.129 -82.3 0.220 70.686 50119.0
7 0.129 70.555 50210.0 0.085 0.130 -83.8 0.214 70.685 50126.2
8 0.130 70.553 50218.3 0.078 0.132 -85.4 0.208 70.685 50132.9
9 0.131 70.550 50224.3 0.072 0.134 -87.3 0.203 70.685 50137.1
10 0.132 70.549 50226.0 0.070 0.135 -88.1 0.202 70.685 50137.9
11 0.132 70.547 50225.9 0.070 0.137 -88.7 0.202 70.685 50137.1
12 0.132 70.546 50225.4 0.071 0.139 -89.0 0.204 70.685 50136.4
13 0.133 70.544 50225.1 0.072 0.141 -89.2 0.205 70.685 50135.9

Table 11 Column 2-4: DTU model predictions for 01-05-2016. Main field values include contributions from the
CHAOS-6 time-dependent internal field (up to SH degree 20), large-scale external field and large scale lithospheric
field (up to SH degree 110). Column 5-7: Crustal field contribution is defined as the difference between the main
field values (column 2-4) and the IFR baseline values (column 8-10). Column 8-10: IFR baseline values apply the
combined main field and local crustal model derived from aeromagnetic data.

Hole pt Main Field Values Crustal Field Values IFR Baseline Values
Decl. Incl. Intensity Decl. Incl. Intensity Decl. Incl. Intensity
[deg] [deg] [nT] [deg] [deg] [nT] [deg] [deg] [nT]

0 0.008 0.196 9.8 0.130 0.133 -75.0 0.138 0.329 -65.2
1 0.008 0.197 10.0 0.130 0.132 -75.9 0.138 0.329 -65.9
2 0.007 0.197 10.1 0.130 0.132 -76.4 0.137 0.329 -66.3
3 0.007 0.197 10.2 0.125 0.130 -79.5 0.133 0.327 -69.3
4 0.008 0.197 10.4 0.126 0.130 -80.6 0.134 0.327 -70.2
5 0.008 0.197 10.6 0.128 0.131 -81.9 0.136 0.328 -71.3
6 0.008 0.197 10.8 0.130 0.131 -83.4 0.138 0.328 -72.6
7 0.008 0.197 11.0 0.132 0.131 -85.1 0.140 0.328 -74.1
8 0.008 0.197 11.2 0.135 0.131 -86.9 0.143 0.328 -75.7
9 0.008 0.197 11.3 0.139 0.132 -88.6 0.147 0.330 -77.2
10 0.008 0.197 11.4 0.141 0.132 -89.2 0.149 0.330 -77.8
11 0.008 0.197 11.5 0.143 0.133 -89.4 0.151 0.331 -78.0
12 0.008 0.197 11.4 0.145 0.134 -89.7 0.154 0.331 -78.3
13 0.009 0.197 11.5 0.148 0.135 -89.9 0.157 0.332 -78.4

Table 12 Differences between geomagnetic field predictions of the DTU model and BGGM2016 at the specific Ekofisk
well. The last three columns are illustrated in Fig. 53.
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Figure 53 Differences between IFR baseline predictions for the DTU method and BGGM2016 for magnetic declina-
tion (top), magnetic inclination (middle) and the total magnetic field intensity (bottom) for the specific Ekofisk well.
Note that the depth values are given in meters below the Earth’s surface.
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The large-scale field agrees rather well between the two models (magnitude of differences around 0.008◦

in declination, 0.197◦ in inclination and 10 nT in the field intensity). Differences in the crustal field part
are larger regarding both the declination (about 0.13◦), inclination (about 0.13◦) and field intensity (around
80 nT). As shown in Fig.53 the differences between the models change only gradually with the depth of the
well, except for the deepest positions.
There are several possible reasons for the observed differences between the model predictions from BGS and
DTU. First, concerning the large-scale magnetic field predictions, the differences are most likely linked to
alternative approaches for modelling the secular variations, external field and large-scale crustal field, and
perhaps also different selections of ground and satellite data. Another contribution to the model differences
comes from the fact that BGGM2016 and CHAOS-6 represent the geomagnetic field up to SH degree 133
and 120, respectively.
Regarding differences in the regional crustal field models from BGS and DTU, one possible reason is that
BGS works with a Fourier technique for downward continuation while DTU has implemented an equivalent
source model. The former is characterized by only one free parameter, which is damping or smoothing of
the solution between upward and downward continuation.
In order to have a fair comparison between the two methods, it is crucial that the corresponding modelling
routines are applied on the same aeromagnetic data set. This is however not the case in the current study.
In addition to the MAGAN survey data, BGS uses a large and complete compilation for the entire North
Sea, including at least 50 km of aeromagnetic data in each direction around the well (C. Beggan, private
communication, 2017). Thus, since the used Ekofisk well is at the edge of the MAGAN survey area, possible
anomalies to the south of the aeromagnetic grid are more likely to be captured by the BGS model.
A rigorous assessment of the differences between the approaches would involve both BGS and DTU working
on exactly the same data set, and setting out in detail all the processing and modelling procedures. Addi-
tionally, for a reasonable comparison of the two model performances, it is necessary to consider a statistical
representable and significant sample of bore holes.

4.5.5 Model comparison with actual well measurements

The used Ekofisk well consists of five different sections, each defined by a specific hole section diameter,
see Table 13. Model values corresponding to the highlighted hole points represent the predictions for the
respective well section. Differences between actual measurements within a well section and the respective
model values for total field intensity and magnetic inclination are not allowed to exceed certain limits, which
are defined by the individual drilling companies or operators. However, the limits are typically dependent
on location, wellbore direction and the type of positional uncertainty error model assigned to the directional
surveys.

The first two hole sections were drilled using Gyro MWD, determining the wellbore inclination and
azimuth with accelerometer and gyroscopic measurements, respectively. In the third and fourth hole section
the axial magnetometer readings were heavily disturbed by drill string interference and a correction algorithm
was applied to optimize the azimuth values. Thus, the downhole magnetic measurements are not directly
comparable to the modeled predictions of the geomagnetic field parameters. The last section of the well
was drilled with uncorrected azimuths, using quality control limits as indicated in Table 14. An overview
of how the acceptance limits for the magnetic inclination and total field intensity is achieved can be found
at http://www.iscwsa.net/ (Error Model Sub-Comittee). The former is set to 0.6◦ (for 3σ), while the
uncertainty in total field intensity is given by 165 nT (for 3σ, including IFR). Table 14 gives the mean
differences between hole section measurements and model predictions of BGS and DTU where uncorrected
azimuths were used. All differences are well within the Baker Hughes’ defined error margins with (apart for
the magnetic intensity for well section 8.5”) BGS having the smallest differences to actual measurements.
Especially the BGS differences for the magnetic inclination are surprisingly low and presumes additional
data and/or model treatments which we are not aware of (e.g. assumptions regarding the spectral gap). It
should be noted that the error margins defined by Baker Hughes include error sources such as drillstring
interference, sag, misalignment and depth.
In order to have more data for model comparisons, Table 14 includes measurement from a 9.5” section of
another Ekofisk well (also drilled with uncorrected azimuths by Baker Hughes).
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Well section Hole pt

26 inch 0
20 inch 1

2

16 inch
3
4

12.25 inch

5
6
7
8
9
10

8.5 inch 11
12
13

Table 13 Ekofisk well sections and hole points within. Model predictions corresponding to the highlighted hole
points are used for determining the differences to respective section measurements.

If the difference between model predictions and actual measurements exceeds the predefined limit, more
conservative uncertainty models are used which widen the acceptance range of difference.
Note that only model predictions for the total magnetic field and magnetic inclination are compared to
actual measurements. MWD provides no quality control of model predictions for the magnetic declination.

Fourier Transform Monopoles
Well section Magn. intensity Magn. inclination Magn. intensity Magn. inclination

[nT] [deg] [nT] [deg]
26 inch - - - -
8.5 inch -24.62 0.02 11.76 -0.34
9.5 inch -24.27 -0.01 61.73 -0.35

Baker Hughes limits 318.86 0.59 318.86 0.59

Table 14 Mean differences between actual measurements in the 8.5” and 9.5” sections and corresponding geomagnetic
model predictions. The last row gives the (absolute) mean Baker Hughes acceptance limits for the same hole sections.

4.5.6 Summary in standard industrial format

The results from the previous sections are now summarized in a more standard industrial format. Tables 15,
16 and 17 give the corresponding values for the BGS model, DTU model and differences, respectively. The
specific selection of hole points corresponds to the different well sections which are characterized by certain
thickness values.
The grid convergence λgc (column 6) describes the angular deviation between the true north and grid north
for this location. These two values are equal to each other at the applied UTM zone’s central meridian. The
respective formula is

λgc = (φ− φcm) · sin(θ), (99)

with (θ,φ) representing the well coordinates and φcm = 3◦E the central meridian longitude of the applied
UTM zone 31N (0◦E to 6◦E).
The total corrections (column 4) are derived by subtracting the grid convergence from the combined large-
scale and regional crustal field declinations of column 5.
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Hole pt Magnetic Field Values Azimuth Corr. Values Depth
Inclination Intensity Total Corr. Declination λgc TVD

[deg] [nT] [deg] [deg] [deg] ft

2 70.360 50164.0 -0.093 0.097 0.190 2126.8
4 70.361 50178.3 -0.097 0.094 0.191 3993.2
7 70.357 50200.3 -0.115 0.074 0.189 7562.7
11 70.354 50215.1 -0.136 0.051 0.187 10300.3

Table 15 Geomagnetic reference and azimuth correction data for BGGM2016 + crustal on 1st of May 2016 for the
different hole sections of the specific Ekofisk well.

Hole pt Magnetic Field Values Azimuth Corr. Values Depth
Inclination Intensity Total Corr. Declination λgc TVD

[deg] [nT] [deg] [deg] [deg] ft

2 70.689 50097.7 0.045 0.234 0.190 2126.8
4 70.688 50108.1 0.037 0.228 0.191 3993.2
7 70.685 50126.2 0.026 0.214 0.189 7562.7
11 70.685 50137.1 0.016 0.202 0.187 10300.3

Table 16 Geomagnetic reference and azimuth correction data for DTU model + equivalent source crustal model on
1st of May 2016 for the different hole sections of the specific Ekofisk well.

Hole pt Magnetic Field Values Azimuth Corr. Values Depth
Inclination Intensity Total Corr. Declination λgc TVD

[deg] [nT] [deg] [deg] [deg] ft

2 0.329 -66.3 0.137 0.137 0.190 2126.8
4 0.327 -70.2 0.134 0.134 0.191 3993.2
7 0.328 -74.1 0.140 0.140 0.189 7562.7
11 0.331 -78.0 0.151 0.151 0.187 10300.3

mean 0.329 -72.1 0.141 - - -

Table 17 Difference between geomagnetic reference and azimuth correction data of the DTU model and BGGM2016.
The last row gives the corresponding mean values.

There is a general satisfactory agreement between the predictions of the two models with absolute mean
differences for the total correction, inclination (or dip angle) and intensity of magnitude 0.14◦, 0.3◦ and 72
nT, respectively. These are within or close to respective values in the ISCWSA error model for BGGM of
0.36◦, 0.2◦ and 130 nT (Williamson et al., 2000; Herland et al., 2017).

4.6 Summary of regional models

This chapter has shown that the equivalent point source routine is also applicable for regional lithospheric
field investigations. Near-surface measurements of the magnetic anomaly field intensity have been used to
estimate all components of the vector field. The method has been tested on three aeromagnetic surveys
from offshore Norway which differ in both period, area and altitude. For chosen quadratic regularization
parameters, the corresponding model predictions are stable for downward continuation. This is a necessary
requirements for a successful application of the equivalent source routing in directional drilling. Based on
aeromagnetic measurements in the vicinity of the Ekofisk field in the North Sea, a geomagnetic vector
field was estimated using both CHAOS-6 predictions for the large-scale signals and an equivalent source
model for the small-scale variations of the lithospheric field. This combined model was compared to the
industry standard BGGM2016 model and actual measurements from an Ekofisk well. The two models have
differences for the total correction, inclination (or dip angle) and intensity of magnitude 0.14◦, 0.3◦ and 72

93



nT, respectively. Additionally, both models are capable to represent the measurements within the industry
standard error margins.
The excellent model predictions from BGGM2016 + IFR for the Ekofisk well data are due to additional
data.
Better regional model predictions are assumed when using a method similar to the one presented in the
following chapter, taking advantage of both satellite and near-surface measurements.
Generally, it is difficult to determine a precise absolute level of the magnetic field based on scalar anomaly
data. This yields especially when there is no information given on the performed data processing, e.g.
the original survey with the raw magnetic measurements, magnetic diurnal correction, IGRF values, line
leveling, etc. Additionally, arbitrary offsets are typically added into the later processing stages in order to
make the data ”look” nice. It is thus important to have independent measurements from the same data area
(aeromagnetic or marine magnetic) or repeat stations for comparison and validation of the provided data.
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5 Joint inversion of satellite and near-surface measurements

Satellites have the great advantage of global data coverage, allowing the resulting lithospheric field models
to possess wavelengths between approximately 350 km and 3000 km (Langel and Hinze, 1998). Near-surface
measurements, on the other hand, conducted from ships or airplanes, are characterized by wavelengths
smaller than 200 km and provide lithospheric field models more suitable for geologic interpretation. Thus,
models based on satellite measurements are only able to capture the large-scale lithospheric structures, while
models obtained from near-surface surveys also provide information of the small-scale features. Combining
both types of data would enable models to cover the entire spatial spectra of lithospheric signals. Unfor-
tunately, such a combination is wishful thinking as there exist a systematic disagreement between global
satellite-based field models and small regional magnetic anomaly maps for the SH degree range 15-100
(Thébault et al., 2010). Spectral gap problems appear especially when the near-surface data area is small.
The resulting effect can be reduced by including either model predictions of the large scale lithospheric
features or satellite measurements. Thus, high precision satellites with low altitudes as well as large-area
near-surface surveys are necessary for better data compilations.

The previous two chapters have demonstrated the successful application of the equivalent point sources
routine for generating global and regional lithospheric field models based on satellite and aeromagnetic
measurements, respectively. This chapter provides a proof of concept study, where monopole based regional
lithospheric field models are generated by jointly inverting satellite and near-surface measurements. The
former are represented by radial field measurements from the CHAMP data set presented in section 3.2
(upper part of Fig. 54), whereas the near-surface measurements are given by magnetic intensity values from
the North-American geomagnetic map NURE-NAMAM2008 (lower part of Fig. 54). The latter is described
in more detail in section 5.1. The used joint inversion routine is explained in section 5.2 and respective model
results are presented in section 5.3.

5.1 Regional near-surface data

The regional geomagnetic intensity data of NURE-NAMAM2008 were kindly provided by D. Ravat and
comprises both marine and aeromagnetic surveys from North America. The corresponding values are de-
fined on a grid of 1.25 km spacing. For data reduction purposes in the combined inversion routine, only
measurements within 20◦ to 50◦ latitude and −70◦ to −130◦ longitude are used, which reduces the data
amount from 28,276,304 to 10,131,220. Further data reduction to 337, 708 is achieved by using every 30th
data point in order to speed up the calculation time. The data altitude is 1000 ft above mean sea level.
NURE-NAMAM2008 combines long-wavelength magnetic anomalies obtained as part of the U.S. National
Uranium Resource Evaluation (NURE) program with short-wavelength anomalies from the North American
Magnetic Anomaly Map (NAMAM). The former is based on 2◦×1◦ aeromagnetic surveys flown from 1975 to
1981 with a line spacing of 4.8 to 9.6 km and variable tie-line spacing. Except for the oceanic regions, Alaska,
Mexico and Canada, the NURE data are reduced for core field contributions based on model predictions of
CM4 up to spherical harmonic degree 13. External field contributions are removed using either base stations
or estimates from CM4. Further, the data are low-pass filtered to retain wavelengths > 50 km (Ravat et al.,
2009).
The NAMAM2002 data are based on the same near-Earth survey measurements as NURE. However, dif-
ferent data processing routines result in more high resolution magnetic anomaly maps. For instance, the
short-wavelength noise, due to e.g. unaccounted external field sources, anthropogenic sources or base-station
offsets, is reduced using leveling and micro-leveling. More details about the different processing steps are
given in Bankey et al. (2002). The data are provided on a grid of 1 km spacing and characterized by a poor
representation of the long wavelength lithospheric signals, especially in the U.S. and the marine regions.
A full spectrum geomagnetic anomaly map is created by combining the altered NURE data (λ > 50 km)
with short-wavelength anomalies (λ < 50 km) from NAMAM2002. The final measurements are projected to
WGS84 locations and 0.01 ◦ block-averaged using GMT (Wessel et al., 2013).
Similar to the aeromagnetic survey data of section 4, the used NURE-NAMAM2008 magnetic intensity val-
ues are projected into geocentric coordinates prior to model inversion.
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Figure 54 Radial lithospheric field data from CHAMP (top) and geomagnetic intensity data from NURE-NAMAM2008 (bottom, every
30th data point) used for the joint inversion routine.
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5.2 Model derivation

The near-surface measurements d1 are given by every 30th magnetic intensity value of NURE-NAMAM2008
in the area between 20◦ to 50◦ latitude and −70◦ to −130◦ longitude (N1 = 337, 708). The respective error
values σ1 are chosen as 1 nT. The largest possible number of sources and corresponding source depth for
representing these near-surface measurements are K1 = 29, 846 and 60 km, respectively (see Appendix G.1).
These values correspond to a global source amount of Kg = 700, 000 (which is equivalent to a source distance
of approximately 27 km at the Earth’s surface) and a source area between 18◦ to 52◦ latitude and −68◦ to
−132◦ longitude (±2◦ in both latitude and longitude around the regional near-surface data area).
For the long-wavelength signal of the joint inversion scheme, every radial CHAMP measurement d2 within the
area between −25◦ to 90◦ latitude and −25◦ to −175◦ longitude is used (±45◦ in both latitude and longitude
around the regional near-surface data area). This corresponds to N2 = 104, 143 satellite measurements and
respective errors σr2 (see Fig. 9). Using the same source grid parameters as the global lithospheric field
models of chapter 3 and a source area defined to be ±50◦ in both latitude and longitude around the regional
near-surface data area, the number of equivalent point sources representing the satellite measurements is
K2 = 12, 937.
Both data sets are combined into a data vector d = [d1,d2] of length N = N1 + N2 = 441, 851 with
corresponding locations ri = [ri, θi, φi] (for i = 1, ..., N) and error values σ = [σ1,σ

r
2]. The sources of both

grids (having different depths and densities as illustrated in Fig. 55) are collected in a combined model
vector of length K = K1 +K2 = 42, 783 with corresponding locations sk = [rk, θk, φk] (for k = 1, ...,K). The
remaining inversion scheme follows the same equations as already presented in chapter 2, using quadratic
regularization with α = 80 nT−2 (equivalent to the global lithospheric field model mono-QR).
The major difference for the joint inversion scheme lies in the fact that GTWG and GTWd are derived
individually for the different data sets. The respective values are weighted by an additional factor % and
added together prior to the usage of equation (61). As pointed out by Ravat et al. (2002), an inversion
scheme which combines satellite and near-surface measurements should weight the two data sets differently
when there is not enough information on the attributed uncertainties. The different weighting accounts also
for differences in the data sets’ amplitude and source-data distances rik. The latter are used to define the
Green’s matrix of the inversion scheme (see equation (103)) which automatically weights large source-data
distances less than small distances. An un-weighted joint inversion scheme will thus mostly build on the
near-surface measurements. In order to account for both data sets approximately equally, the joint inversion
scheme of this study uses %1 = 0.001 and %2 = 1 for near-surface and satellite measurements, respectively.
This is equivalent to NURE-NAMAM2008 error values being on the order of 32 nT.
Due to limited computational resources, only satellite data which extend up to η = ±40◦ in longitude and
latitude around a given source are taken into account in the joint inversion scheme. The corresponding value
for the near-surface data is η = ±15◦. The reasoning for these specific data ranges is given in Appendix G.2.

5.3 Joint inversion model results

Figure 56 illustrates the jointly estimates anomaly field at the Earth’s surface. Corresponding model predic-
tions at satellite and near-surface altitude are given in the left panels of Figs. 57 and 58, respectively. The
associated residuals are illustrated in the figures’ right panels.
In order to assess the derived joint inversion model result, two additional models are generated using only
radial CHAMP data or NURE-NAMAM2008 data. Except for the regularization parameter, the corre-
sponding inversion schemes differ in the following input parameters (here the subscripts 1 and 2 refer to the
NURE-NAMAM2008 and radial CHAMP data, respectively):

Model 1: d = radial CHAMP data N = 104, 143 K = 12, 937 η = 40◦ % = 1
Model 2: d = NURE-NAMAM2008 N = 337, 708 K = 29, 846 η = 15◦ % = 1
Model 3: d = NURE-NAMAM2008

and radial CHAMP
N = 441, 851 K = 42, 783 η1 = 15◦, η2 = 40◦ %1 = 0.001, %2 = 1

Table 18 lists the Huber -weighted residuals and Huber -weighted normalized residual RMS values for the
derived model predictions at CHAMP (upper part of the table) and NURE-NAMAM2008 altitude (lower
part of the table). For the combined inversion scheme (Model 3), the Huber -weighted residuals at satellite
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Figure 55 Source distribution for combined inversion scheme. Left: 12,937 sources (corresponding to a global source amount of
Kg = 38, 600) at 180 km depth. Right: 29,846 sources (corresponding to a global source amount of Kg = 700, 000) at 60 km depth.
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Figure 56 Joint inversion model predictions of the lithospheric magnetic intensity field at the Earth’s surface.

altitude range between −401 nT and 394 nT with a median value of 0.01 nT. The corresponding Huber -
weighted normalized residual RMS value is 1.28. All of these values are similar to model results which are
based on radial CHAMP data only (Model 1).
The joint inversion model predictions at NURE-NAMAM2008 altitude are characterized by a larger RMS
value than the predictions at satellite altitude. This, however, is expected when looking at the purely near-
surface based model results (Model 2) and knowing that the used source resolution in the near-surface area
is lower than the corresponding data resolution. The latter enables the model to represent the measurements
only to a certain level of accuracy.
The derived results are compared with the high-resolution lithospheric field models EMM215, developed
by Stefan Maus and co-workers (www.ngdc.noaa.gov/geomag/EMM/), and WDMAM2 (Lesur et al., 2016).
Looking at Table 18, the Gauss coefficients of these global lithospheric field models result in radial field
predictions at satellite altitude which represent the measurements to a similar level of accuracy as the joint
inversion predictions (Model 3). The misfits due to near-surface measurements, on the other hand, are
distinctly smaller for the joint inversion model. This is also clearly seen in the corresponding residual maps
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given in the right panels of Fig. 58. Here, the residual values of model 3 are generally smaller than EMM2015
and WDMAM over most parts of the used near-surface data area, especially in the regions of Lake Superior,
the Gulf of Mexico and the North Atlantic ocean.

Model 1 Model 2 Model 3 MF7 EMM2015 WDMAM

max ∆Br (nT) 393.97 1771.14 394.07 394.00 394.16 394.02
min ∆Br (nT) -401.25 -2072.54 -400.79 -410.35 -409.70 -410.31
median ∆Br (nT) 0.01 -0.06 0.01 -0.06 -0.09 -0.06
RMS ∆Br (-) 1.29 - 1.28 1.33 1.46 1.33
max ∆F (nT) 9499.73 9447.92 9569.98 9575.16 9582.28 9549.91
min ∆F (nT) -8683.88 -8497.79 -8590.41 -8665.23 -8626.05 -8652.94
median ∆F (nT) -25.70 -0.01 -2.20 -22.51 -23.91 -24.85
RMS ∆F (-) - 21.31 27.42 52.07 52.62 57.93

Table 18 Huber-weighted model residuals and normalized Huber-weighted residual RMS values for three different combinations of data
and source distribution. Shaded areas represent the results due to upward or downward continued model predictions. The last three
columns present corresponding statistics for the models MF7 (up to SH degree 133), EMM2015 (up to SH degree 720) and WDMAM
(up to SH degree 800), using CHAOS-6 for the core field predictions (SH degree 1 to 15).

 150° W  120° W   90° W   60° W   30° W 

 20° S 

 10° S 

  0°   

 60° N 

 70° N 

 10° N 

 20° N 

 30° N 

 40° N 

 50° N 

 80° N 

−100 −80 −60 −40 −20 0 20 40 60 80 100

nT

 150° W  120° W   90° W   60° W   30° W 

 20° S 

 10° S 

  0°   

 60° N 

 70° N 

 10° N 

 20° N 

 30° N 

 40° N 

 50° N 

 80° N 

−50 −40 −30 −20 −10 0 10 20 30 40 50

nT

Figure 57 Radial lithospheric field predictions (left) and corresponding residuals (right) at satellite altitude for the joint inversion

scheme using quadratic regularization (α = 80 nT−2) and the weighting factors %1 = 0.001 and %2 = 1 for near-surface and satellite
measurements, respectively.
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Figure 58 Lithospheric field intensity predictions (left) and corresponding residuals (right) at NURE-NAMAM2008 altitudes for the
joint inversion scheme (upper row), models EMM2015 (up to SH degree 720) and WDMAM (up tp SH degree 800).

5.3.1 Regional power spectra

Since the monopole amplitudes are easily transformed into spherical harmonic coefficients (see section 2.2),
the equivalent point sources method possesses the possibility of estimating regional power spectra. This can
be achieved by retaining only the sources inside the region of interest, implicitly setting the amplitude of
the remaining sources to zero and renormalizing the power spectrum accounting only for the area considered.

Regional lithospheric field models based on the equivalent point source routine are generated using the same
input parameters as models 1-3 of the previous section. However, instead of the previously used source area
of Fig. 55, only sources inside a spherical cap with center-point C = [35◦N, 100◦W ] and half angle θs0 = 20◦,
and data inside a cap with the same center-point and half angle θd0 = 15◦ are used for the inversions. The
sum of the resulting source amplitudes is zero for preventing aliased regional power spectra. The derived
model predictions of the lithospheric field intensity at the Earth’s surface (using CHAOS-6 for the core field

100



estimations) are given in panels (a),(c) and (e) of Fig. 60 along with the corresponding model predictions of
MF7, EMM2015 and WDMAM.
Using a global source distribution and defining only source amplitudes inside a cap (C, θs0) to be non-zero and
equivalent to the model results of the previous paragraph (see Fig. 59), regional power spectra are derived

using equations (40) and (41). Respective values are multiplied with 4πa2

2πa2(1−cos θs0) (for a = 6371.2 km) in

order to account for the caps’ surface area with respect to the surface area of the Earth. Unfortunately, no
realistic regional power spectra could be achieved using this approach and it is concluded that the correspond-
ing methodology needs to be investigated further. For this reason, the vector field predictions corresponding
to Fig. 60 are used to generate regional power spectra based on the R-SCHA routine of Vervelidou and
Thébault (2015). Figure 61 displays the respective values, which were kindly derived by Fotini Vervelidou.
For regional R-SCHA power spectra the distance between two spectral terms is dependent on the cap’s
half-angle and thus only equal to 1, as it is the case for power spectra of the conventional spherical harmonic
analysis, for θd0 = π. In the present case, the spectral bin size corresponds to π/θd0 = 12. The derived
R-SCHA regional power spectra are rescaled by this number in order achieve a meaningful comparison to
global power spectra. Additionally, the spectra are normalized by 2πa2(1 − cos θs0) (for a = 6371.2 km) in
order to account for the caps’ surface area with respect to the surface area of the Earth.

Figure 59 Regional power spec-
tra of the equivalent point source
routine are derived using equa-
tions (40) and (41), with globally
equal-area distributed sources
having non-zero amplitudes (in-
dicated in red) only within the
region of interest.

Figure 61 shows that the used data sets are compatible. As expected, the highest power for all degrees is
provided by the regional power spectrum which is based solely on near-surface data (panel (c) of Fig. 60),
whereas the regional power spectrum from the satellite measurements (panel (a) of Fig. 60) results in the
lowest power amplitudes (especially for small wavelengths). The power spectra corresponding to the radial
CHAMP- and combined radial CHAMP and NURE-NAMAM2008 data (panel (a) and (e) of Fig. 60) are of
similar amplitudes up to spherical harmonic degree n = 80, whereafter the former experiences a significant
decrease in amplitude, reaching a value of 1 nT2 at n = 230. The regional power spectrum of panel (e)
reaches this level at n = 790. It is this power spectrum, which corresponds remarkably well with the results
of WDMAM and EMM2015 up to SH degree n = 600. It should be noted that the joint inversion model has
higher power than the global lithospheric field models up to approximately SH degree n = 550.
All derived regional power spectra are characterized by larger amplitudes compared to power spectrum
based on globally distributed measurements (black curve in Fig. 61, corresponding to the model results of
mono-QR).
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5.4 Summery of joint equivalent point source inversion

High-resolution global lithospheric field models (i.e. WDMAM and EMM2015) are usually based on a com-
bination of satellite and near-surface data, using satellite measurements or global field models to replace the
large-wavelength features in near-surface survey areas as well as in regions of missing near-surface data. A
joint inversion of satellite and near-surface data is, however, barely used for global applications, and seldom
seen for the generation of high-resolution regional lithospheric field models. For instance, Thébault et al.
(2006a) used the R-SCHA method for jointly inverting measurements of repeat stations, observatories, aero-
magnetic surveys and CHAMP for lithospheric magnetic field predictions over France. Ravat et al. (2002)
used equivalent dipole sources for generating a joint inversion lithospheric field model over Canada based on
aeromagentic intensity data and Magsat measurements.
This chapter has shown that the equivalent point source routine is also capable of generating joint inver-
sion models combining satellite and near-surface data. Using the North American region as a test case,
the regional power spectrum of the derived joint inversion model corresponds well to the results of the
high-resolution global lithospheric field models WDMAM and EMM2015, having slightly higher power val-
ues up to SH degree n = 550. All of these models result in similar misfit values with respect to the used
radial CHAMP data. The corresponding model predictions for the NURE-NAMAM2008 data set, on the
other hand, result in remarkably smaller misfit values for the joint inversion model than for WDMAM and
EMM2015.
The presented case study used only every 30th near-surface measurement point due to computational lim-
itations. Future improvements of the joint inversion method should, however, investigate a better way to
implement all available data. The same is valid for the current approach of only using a limited amount of
data around a given source for the joint inversion routine. Also the weighting between satellite and near-
surface measurements should be based on a better quantitative justification.
The derived jointly inverted source values show distinct edge effects around the source area corresponding to
the near-surface data. These effects could be reduced by replacing the abrupt change in source depth with
a more gradual transition zone.
So far, only radial satellite measurements have been used for the generation of jointly inverted field predic-
tions. Future applications of the corresponding routine should make use of the entire vector field and/or
gradient measurements.
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Figure 60 Lithospheric field intensity predictions at the Earth’s surface for equivalent point source models based on radial CHAMP
data (a), NURE-NAMAM2008 (c) and the combined observations of radial CHAMP and NURE-NAMAM2008 data (e). Additionally,
field intensity predictions are given for the models MF7 (up to SH degree 133) (b), EMM2015 (up to SH degree 720) (d) and WDMAM
(up to SH degree 800) (f). The field predictions are derived on a grid of 0.1◦ latitude × 0.2◦ longitude and within a cap of half angle
15◦, centered at 35◦N and 100◦W. The CHAOS-6 model was used for respective core field estimations. The sources used to generate
panels (a),(c) and (e) are located inside a cap with half angle 20◦ and centered at 35◦N and 100◦W.103
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Figure 61 Regional power spectra corresponding to panels (a)-(f) of Fig. 60. Respective values were kindly derived by Fotini
Vervelidou using the R-SCHA based routine of Vervelidou and Thébault (2015). For comparison, the global power spectrum of the
quadratic regularized model mono-QR is given in black.
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6 Summary and conclusion

This thesis presents the successful development and application of a potential field modeling method based
on equivalent point sources to problems on both global and regional scales. Field predictions are derived
from global satellite measurements from CHAMP and regional near-surface measurements from offshore
Norway and North America. The employed inversion scheme considers the residuals in a least squares sense
but handles outliers using a robust approach. Stable model solutions at the Earth’s surface and below are
derived by the additional implementation of model regularization.

The first part of the thesis focuses on global lithospheric field models derived from CHAMP satellite vector
magnetic field data and using an IRLS algorithm, with Huber weighting of residuals and latitude-dependent
data uncertainties implemented for all three field components at all latitudes. Three different regularization
approaches are tested: quadratic regularization (QR), maximum entropy regularization (ER) and L1-norm
regularization (L1). The first approach results in models which have the smallest possible sum of squares of
the source values for a chosen level of misfit. The resulting damping of the field amplitudes is not always in
agreement with the geology, as the lithospheric field is characterized by several large amplitude local mag-
netic field anomalies like the Kursk anomaly in Ukraine and the Bangui anomaly in central Africa. Both the
L1-norm regularization and the entropy regularization allow higher amplitude localized anomalies. The final
models representing the quadratic, entropy and L1-norm regularization scheme are denoted as mono-QR,
mono-ER and mono-L1, respectively. The corresponding regularization parameters are chosen according to
the model misfits and by considering field predictions at the Earth’s surface. The final models represent the
global observations to a similar level of accuracy. Model differences are more distinct in the spectral domain
and in visual inspection of the radial field predictions at the Earth’s surface. There is excellent agreement
between the various models for spherical harmonic degrees up to n = 60. The models show also good
agreement with MF7 and CHAOS-6, with degree correlations above 0.7 for degrees n < 100 and n < 105,
respectively. The entropy regularized model mono-ER has the lowest power for spherical harmonic degrees
n > 65, whereas the power of mono-L1 is slightly less than that of the quadratic regularized model mono-
QR, although this depends on the precise choice of the regularization parameter. In these tests, the entropy
regularized model requires fewer effective degrees of freedom and its predictions at the Earth’s surface have
the smallest global average absolute radial field value.

The equivalent source routine is based on local basis functions, so the technique is also suitable for regional
geomagnetic field investigations. The second part of this thesis concentrates on regional lithospheric field
models applying a quadratic regularized IRLS scheme to aeromagentic scalar data from offshore Norway.
The corresponding routine uses only sources in the vicinity of the survey and does not account for latitude
dependent data errors. With suitable regularization parameters, the model predictions of all three field
components are stable when performing downward continuation. By comparing an equivalent source based
regional model with the industry standard model BGGM20016 and real well data from the Ekofisk field in
the North Sea, the equivalent source routine is demonstrated to be suitable for directional drilling applica-
tions.

The final part of this thesis shows that the equivalent point source routine is capable of generating joint
inversion models of satellite and near-surface data. Radial CHAMP data with near-surface field intensity
data from NURE-NAMAM2008 are used to generate a high resolution regional map of North America.
The resulting field predictions as well as regional power spectra are found to be in good agreement with
the lithospheric field models EMM2015 and WDMAM. Corresponding residual values with respect to the
NURE-NAMAM2008 data are smallest for the joint inversion model.

The above results suggest that the equivalent point source inversion routine is a flexible method for generat-
ing both global and regional lithospheric field models. The benefit of the used approach is its mathematical
simplicity and useful application for data at any altitude and spatial extension. The equivalent source values
can also be easily transformed into spherical harmonics, allowing for comparisons with SH based models
and the possibility to generate approximate regional power spectra. The main advantage of the equivalent
point source routine lies in the local parametrization of the source model, compared with the global nature of
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standard spherical harmonic basis functions. When using global basis functions, noise focused at a particular
location (e.g. polar latitudes) contaminates all model parameters and is hard to control. This problem is
particularly noticeable for zonal terms in spherical harmonic models. However, in the presented approach
only the equivalent sources located close to the disturbed regions are affected. A further advantage that
follows from the local parametrization is the ability to apply model regularization (or other a priori informa-
tion) locally. The adopted method is also not dependent on injecting synthetic data with the satellite polar
gap regions, as is necessary in the standard spherical harmonic modeling framework.

Since the launch of the satellite trio Swarm, geomagnetic data quality has improved significantly. The
methodology presented here needs further improvement in order to take full advantage from the satellites’
constellation. In particular, the data error covariance matrix will need to be extended to handle field dif-
ferences, approximating NS and EW gradients, and related error correlations. With these methodological
improvements the lithospheric field models are also expected to improve (Olsen et al., 2017).
In addition, the method of using only a limited amount of measurements close to a given source to improve
the efficiency of the regional and combined inversion routine is promising and should be investigated fur-
ther in order to ensure that as much data as possible is used when deriving regional lithospheric field models.

Having established the technique in this thesis and demonstrated its application in case studies, a wide range
of future applications is now possible. For instance, the combined inversion routine can be used to produce
full spectrum model predictions, which are valuable for directional surveying and lithospheric studies in
particular regions (e.g. Australia). The method also possesses the possibility for magnetization studies.
Further, the local parametrization of the method can be an advantage for lithospheric field studies of other
terrestrial planets and the Moon (e.g. Toyoshima et al., 2008).
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Thébault, E., Mandea, M., and Schott, J. (2006a). Modeling the lithospheric magnetic field over France
by means of revised spherical cap harmonic analysis (R-SCHA). Journal of Geophysical Research: Solid
Earth (1978–2012), 111(B5).
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A Aeromagnetic data processing

For getting a better understanding of the used aeromagnetic data sets of this thesis, this chapter provides a
brief introduction to a typical aeromagnetic data processing sequence, involving the correction for temporal
field variations, main field subtraction, line leveling and micro leveling. Note that the common final processing
steps of gridding and contouring will not be discussed here.

A.1 Error sources

Before starting the processing procedure, raw measurements are checked for spikes, gaps, instrument noise
and other data irregularities (Luyendyk, 1997). Other severe contributions to error sources are due to mag-
netometer drift, aircraft effects, navigational effects, temporal magnetic field variations, ground clearance
variations, altitude variations, and wave noise. The former contribute with very small noise levels (ca 0.1
nT) applying modern magnetometers (e.g. helium magnetometers (Reeves, 1993) and cesium magnetometers
(Matzka et al., 2010)).
Aircraft effects are due to the aircraft’s permanent magnetization (heading error) and its movement depen-
dent magnetization (maneuver noise). The latter comprises of the Earth’s magnetic field induced magneti-
zation and a magnetization induced by currents within the aircraft. Maneuver noise is commonly removed
from the measurements by performing a compensation flight prior to a survey. In this procedure the aircraft
performs different roll, pitch and yaw maneuvers at high altitude and in a region of low magnetic signature,
see Fig. 62.
Navigational effects are caused by inaccurate positioning of the different measurement points. Modern GPS
systems have positional accuracies of ±5 m, while pre-GPS techniques (radio-beacons and the comparison
of video recordings with aerial photographs and topographical maps) were characterized by values of ±50
to 500 m. In combination with the navigational data control, it is important to take the cable length into
account: the distance between the aircraft’s navigational reference point and the recording magnetometer.
Hereafter the navigational data and raw measurements are merged for the following data processing.
Ground clearance effects are due to the fact that the measured amplitude of magnetic anomalies varies with
the distance to the measuring device. A related error source is the altitude variation, magnetic field changes
with height above the ellipsoid (ca. 0.025 nT/m).
Wave noise is created by secondary induced magnetic fields due to surface waves on large bodies of water.
Values up to 1.5 nT have been recorded for this error source (at 80 m altitude) (Luyendyk, 1997).
The mentioned error sources have to be reduced as much as possible prior to aeromagentic data investigation,
as the noise envelope limits the amplitude of geological anomalies that can be detected in a survey (Reeves,
1993).

Figure 62 Roll, pitch and yaw
maneuvers applied for the maneu-
ver noise compensation.
http://blog.
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A.2 Main field corrections

In this processing step the survey time equivalent IGRF model of the Earth’s regional field is subtracted from
the measurements. The corresponding values are internationally agreed and derived using both satellite and
observatory magnetic measurements. It should be noted that the model field is mainly based on the magnetic
field arising from electric currents in the outer Earth’s core and does not include rapid field fluctuations and
small scale fields due to magnetized crustal rocks (Macmillan and Finlay, 2011).
For the data processing approach, secular variations are neglected as the mean date for the survey (and
measurement locations above the ellipsoid) is used for deriving the corresponding model values (Luyendyk,
1997).

A.3 Removal of temporal variations

Current systems in the ionosphere and magnetosphere introduce rapid fluctuations in magnetic field measure-
ments on Earth: micropulsations, diurnal variations and magnetic storms. The corresponding variations can
be of a few seconds, minutes or hours - shorter than a typical aeromagnetic survey duration. The recorded
magnetic fluctuations in an aeromagnetic missions have thus both temporal and spatial reasons - they are
dependent on morphology changes due to the movement from one measurement point to another, and the
field fluctuations due to the corresponding traveling period. Before further investigations of the data, the
magnetic time variations, as well as instrumental drift, have to be removed from the measurements (Reford
and Sumner, 1964).
Field variations which last a day or more can easily be quantified with repeating measurements. More com-
plicated is the assessment of rapid fluctuations, especially in polar regions.
There exist three common approaches to deal with rapid time variations. The first one applies base station
measurements to correct the airborne records, while the second approach uses tie-lines and corresponding
cross-over corrections (see section A.3). The last method involves micro-leveling (Reeves, 1993). Most aero-
magnetic surveys apply all three approaches in order to achieve the best possible data quality (Reeves, 2005).
Compared to the tie-line approach, base stations (at a fixed location on the ground) provide field corrections
at every measurement point - not only at cross-over locations. However, the approach assumes that field
variations on the ground are representative for the entire survey area. This assumption is not strictly true,
especially for base station - aircraft distances of > 50 km, and can introduce high-frequency errors into the
measurements (Luyendyk, 1997).
In order to minimize the effect of temporal field variations as much as possible, ground measurements are
used to determine magnetic undisturbed days for the airborne mission.

Magnetic leveling

Aeromagnetic surveys consist of flight-lines covering the area of investigation. These lines are approximately
parallel to each other. However due to e.g. weather conditions, orientation of the magnetic region of interest
and topography changes, different line configurations exist. The flight-line spacing is defined individually
for the different surveys and depend mainly on the mean depth to the crystalline basement, the required
mapping resolution, the size of the target to detect and financial resources (Hamoudi et al., 2011). Typical
spacing values range from 50 − 1500 m. It is common to fly control lines (tie-lines) perpendicular to the
flight lines at distances of typically 10 times the flight-line spacing (Hamoudi et al., 2011). This rate is often
reduced to 5 for high latitude regions and 3 for some petroleum explorations (Hamoudi et al., 2011). After
having removed the time dependent magnetic variations described in the above sections, flight lines and tie-
lines should record identical values at their crossover points (Beamish et al., 2015). This is however not the
case due to e.g. incomplete diurnal corrections, flight altitude variations, navigational errors, magnetometer
drift or random noise (Mauring et al., 2002; Beamish et al., 2015). Before performing data gridding and
interpretation, the measured differences at crossover points have to be minimized in order to remove the
observed short-period magnetic variations from the data (Mauring et al., 2002). This procedure is commonly
known as ”leveling” and different empirical strategies have been developed throughout the last century for
its optimization (Luyendyk, 1997). Differences between tie-lines and flight-lines at crossover points have got
various names in the literature: mis-ties, crossover errors, misclosure errors and intersection errors. The
former will be applied in the following.
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Since mis-ties are typically much larger (10− 100 nT) than modern aeromagnetic survey resolution, leveling
becomes especially important when resolving anomalies in the range of 0.5 − 1 nT (Mauring et al., 2002;
Beamish et al., 2015). The general aim of leveling is to reduce the mis-ties to an amplitude below the noise
envelope (Reeves, 1993).

Leveling of aeromagnetic surveys is typically performed by either least square methods or techniques based
on fitting smooth functions to the observed mis-tie values (Mauring et al., 2002). Two techniques of the first
category are the ”method of condition equations” and the ”method of observation equations”. The reader
is referred to Cowles (1938) and Green (1983) for further details of these techniques.
Typical techniques of the last category (all based on tie-line leveling) are polynomial leveling, B-spline
leveling, low-pass filter leveling and median leveling (Mauring et al., 2002). The following sections will focus
on the former two techniques. Additionally, a short list of literature suggestions for tie-line independent
methods is given at the end of this section.

Adjustment of intersection locations

Most leveling methods assume accurate intersection locations along the flight pattern (Reeves, 2005). In
order to ensure this condition, crossover locations are often adjusted prior to leveling. This adjustment
can be performed by minimizing the sum of squares of the closure errors around the individual crossover
points (Green, 1983). Except for the survey boundaries, each crossover point is surrounded by four loops of
intersection lines, each defined by a closure error C

C = ηa − ηb + ηc − ηd, (100)

where ηx represents the mis-tie (magnetic intensity difference between flight-line and tie-line) at crossover
point x. Note that the signs are dependent on the chosen flight path, see Fig. 63. More details on reducing
the closure errors of a given aeromagnetic survey can be found in (Green, 1983).
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Figure 63 Left: The closure error C is dependent on the mis-ties at crossover points a − d. The arrows indicate
the flight path. Right: A crossover point i is surrounded by four loops of intersection lines. Each loop is defined
by a closure error. The figure is an adjusted version of Fig.1 in Green (1983).

Tie-line processing using polynomial leveling

Polynomial leveling is a standard procedure for reducing mis-ties below the noise envelope (Reeves, 2005).
The method is based on the technique of fitting a polynomium p(x) (or spline) to the N measured mis-
tie values e(x) along a survey line, where x represents the corresponding distance in time (Mauring et al.,
2002). The desired polynomium is derived using the least squares method and minimizes the function∑
j [e(xj) − p(xj)]2 for j = [1, N ]. It is common to apply low order polynomial functions (1-3) with orders

less than (N − 1)/2 (Luyendyk, 1997).
The tie-line processing is based on the assumption that the measured magnetic intensity is directionally
invariant. In that sense flight lines and tie-lines should record equivalent values at crossover points, which
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justifies that flight lines are adjusted to the tie-lines (Beamish et al., 2015).
Figure 64 illustrates the typical steps within polynomial leveling. Here the flight-lines are represented by
horizontal lines 1− 4, while the perpendicular tie-lines are denoted A−C. Crossover locations are indicated
by the letters a − p Prior to the leveling steps the principal tie-line (T in the figure) is defined by the op-
erator. This will be the absolute reference for the leveling process. The measurement period of T is often
characterized by low geomagnetic activity, while the respective covered area shows a low magnetic profile
(Reeves, 2005).
In the first polynomial leveling step all tie-lines are leveled with respect to T , determining the tie drift
curves. The measured differences between a given tie-line C and T are calculated for intersections of the
same flight-line (Cd − Tb, Ch − Tf , Cl − Tj , ...). Plotting the corresponding values against their respective
times, a polynomial fit is derived and subtracted from the data set of C. This results in the leveled tie-line
C∗. This procedure is repeated for all tie-lines.
The next step describes the leveling of all combined flight-lines to the now adjusted tie-lines. The mis-ties
between the flight-lines (1− 4) and tie-lines (A∗ − C∗) are calculated and sorted with respect to their mea-
surement time along the flight-lines (1a − A∗a, 1b − Tb, 1c − B∗c , ...) . The corresponding polynomial fit is
subtracted from the original flight-line measurements resulting in the adjusted version 1∗ − 4∗.
Remaining residual values at cross-over points can be removed by two further steps (Luyendyk, 1997): i) a
second flight-line leveling (1∗∗ − 4∗∗) where the individual adjusted flight lines are leveled to the adjusted
tie-lines (i.e. 3∗i −A∗i , 3∗j − Tj , 3∗k −B∗k , 3∗l − C∗l );
ii) The adjusted tie-lines are leveled to 1∗∗ − 4∗∗.
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Figure 64 Idealistic illustration of flight-lines (blue) and tie-lines (black). Crossover points (white circles) appear
whenever the two lines meet.

Leveling has no distorting effect on the original data as the respective flight-lines and tie-lines are only
exposed to a constant shift (Mauring et al., 2002).
The polynomial leveling approach assumes smooth temporal variations of the mis-ties. This is indeed the
case for most tie-lines which have a dense coverage of crossover points.
It is noteworthy that all mis-ties are weighted equally in the above presented procedure. This makes the
polynomial leveling approach sensitive to outliers, a disadvantage which can be avoided by using piece-
wise low-order polynomial fitting (Mauring et al., 2002). The same authors give a good description of the
sensitivity of the polynomial fit to the amount of applied mis-ties.
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Leveling without tie-lines

Tie-line correction looses its efficiency for areas with large lithospheric gradients and for low flight altitudes
(Beamish et al., 2015). Also, typical mis-tie errors are larger than modern aeromagnetic survey resolution.
Having this in mind, and due to the fact that flying tie-lines is very expensive, different alternatives for tie-line
corrections have been developed throughout the last decades. Some of the proposed leveling methods without
the use of tie-lines are: synthetic tie lines (Hauta-niemi et al., 2005), wavelet transform (Fedi and Florio,
2003), horizontal gradient (Nelson, 1994), 1D and 2D polynomial data fitting (Beiki et al., 2010), line-to-line
correlation (Huang, 2008), bi-directional gridding scheme (Beamish et al., 2015), weighted spatial averaging,
and temporal filtering (Ishihara, 2015). The reader is referred to the mentioned literature for further details.

Micro leveling

Residual errors remaining after the above presented procedures are removed using micro-leveling. These
errors become visible when the processed data is gridded and displayed as enhanced images (Luyendyk,
1997). Micro-leveling is a filtering process for removing across-line wavelengths equal to twice the line
spacing and along-line wavelengths equal to the tie-line spacing (Reeves, 1993).

119



B Green’s matrix for equivalent point source representation

The lithospheric field potential at a given position ri = (ri, θi, φi) can be expressed by means of K equal
area distributed equivalent sources with individual positions sk = (rk, θk, φk) and source amplitudes qk (in
nT)

A(ri) = −∇Φ(ri)

= −
K∑
k=1

qk
r2
k

rik

= −
K∑
k=1

qkêi · ∇
r2
k

rik

=
K∑
k=1

qkgik

= Gq,

(101)

where rik and µik are the distance and angle between the position vectors of the location of interest i and
source k, respectively:

rik = |ri − sk|

=
√
r2
i + r2

k − 2rirk cos(µik)

cos(µik) = cos(θi) cos(θk) + sin(θi) sin(θk) cos(φi − φk).

(102)

where êi represents the unit vector, q is a vector of source amplitudes and G is an N ×K Green’s matrix
with elements gik that are directional derivatives of source k evaluated at the location and measurement
direction i,

gik = −êi · ∇
r2
k

rik
. (103)

Applying rik =
√
u with

u = r2
i + r2

k − 2rirk cos(µik)

cos(µik) = cos(θi) cos(θk) + sin(θi) sin(θk) cos(φi − φk)

cos(φi − φk) = cos(φi) cos(φk) + sin(φi) sin(φk)

sin(φi − φk) = sin(φi) cos(φk)− cos(φi) sin(φk)

δ

δx

( 1√
u

)
= −1

2
· u−3/2 · δu

δx
,

(104)

the radial, latitudinal and longitudinal parts of the Green’s matrix can be derived as follows,

grik = − ∂

∂ri

( r2
k

rik

)
= − ∂

∂ri

( r2
k√
u

)
= −r2

k ·
[
− 1

2
u−3/2 ·

(
2ri − 2ri cos(µik)

)]
= r2

k ·
[
u−3/2 · (ri − ri cos(µik))

]
=

r2
k

r3
ik

[
ri − rk cos(µik)

]
(105)
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gθik = − 1

ri

∂

∂θi

( r2
k

rik

)
= −r

2
k

ri

[
− 1

2
u−3/2 ·

(
− 2rirk(− sin(θi) cos(θk) + cos(θi) sin(θk) cos(φi − φk))

)]
=

r3
k

r3
ik

[
sin(θi) cos(θk)− cos(θi) sin(θk) cos(φi − φk)

] (106)

gφik = − 1

ri sin(θi)

∂

∂φi

( r2
k
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= − r2

k

ri sin(θi)

[
− 1

2
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=
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[sin(θk) sin(φi − φk)].

(107)
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C Removal of gross outliers

The quadratic regularized model with α = 900 nT−2 is used to identify disturbed satellite tracks by means of
large residual values. In order to prevent these tracks to have an influence on the equivalent source models,
days where at least one of the residual components > 100 nT are removed from the data set, see Fig. 65.
For the used CHAMP data set (from 01/01/2009 to 02/09/2010) this corresponds to 30 days. Please note
that this additional data selection is only performed on non-polar data values (QD latitude |θ| < 55◦).
The removal of gross outliers has almost no influence on the resulting power spectrum (see Fig. 66), and
minimal variations are observed for the corresponding radial field maps (see Fig. 67). However, clear
differences are given in the corresponding model statistics of Table 19.
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Figure 65 Non-polar residual values corresponding to the quadratic regularized model with α = 900 nT−2. Days
where at least one of the residual components > 100 nT are removed from the data set.
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Figure 66 Power spectrum corresponding to equivalent source models with (purple) and without (red circles) gross
outliers

no gross outliers incl. gross outliers

mean ∆Br (nT) -0.07 0.06
RMS ∆Br (-) 1.30 1.33
RMS ∆Br polar (-) 1.46 1.49
RMS ∆Br non-polar (-) 1.19 1.21
mean ∆Bθ (nT) -1.34 -1.54
RMS ∆Bθ (-) 1.27 1.32
RMS ∆Bθ polar (-) 1.38 1.46
RMS ∆Bθ non-polar (-) 1.18 1.21
mean ∆Bφ (nT) -0.36 -0.36
RMS ∆Bφ (-) 1.28 1.30
RMS ∆Bφ polar (-) 1.43 1.48
RMS ∆Bφ non-polar (-) 1.16 1.17
RMS ∆B (-) 1.28 1.32
RMS ∆B polar (-) 1.42 1.48

RMS ∆B non-polar (-) 1.17 1.20

Table 19 Model statistics for investigation of gross outliers.
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Figure 67 Radial lithospheric field component at the Earth’s surface for the quadratic regularized model (α =
900 nT−2) with (top) and without (bottom) gross outliers in the data set.
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D Additional material for the analysis of global lithospheric field
models

D.1 Quadratic regularized models

Maps of the radial field component at the Earth’s surface

Figure 68 Radial lithospheric field component at the Earth’s surface for the quadratic regularized models using
α = 80 nT−2 (top), α = 100 nT−2 (middle) and α = 200 nT−2 (bottom). The color bar is given in nT.
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Figure 69 Radial lithospheric field component at the Earth’s surface for the models MF7 (top), CHAOS-6 (middle)
and CM5 (bottom). The color bar is given in nT.
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Maps of the intensity field at the Earth’s surface

Figure 70 Lithospheric field intensity at the Earth’s surface for the quadratic regularized models using α = 80 nT−2

(top), α = 100 nT−2 (middle) and α = 200 nT−2 (bottom). The color bar is given in nT.
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Maps of the radial field component at 300 km altitude

Figure 71 Radial lithospheric field component at 300 km altitude for the quadratic regularized models using α =
80 nT−2 (top), α = 100 nT−2 (middle) and α = 200 nT−2 (bottom). The color bar is given in nT.
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Figure 72 Radial lithospheric field component at 300 km altitude for the models MF7 (top), CHAOS-6 (middle) and
CM5 (bottom). The color bar is given in nT.
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Maps of the intensity field at 300 km altitude

Figure 73 Lithospheric field intensity at 300 km altitude for the quadratic regularized models using α = 80 nT−2

(top), α = 100 nT−2 (middle) and α = 200 nT−2 (bottom). The color bar is given in nT.
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Residual maps at data altitude

Figure 74 Radial residuals at data altitude for the quadratic regularized models using α = 80 nT−2 (top), α =
100 nT−2 (middle) and α = 200 nT−2 (bottom). The colorbar is given in nT.
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Figure 75 Radial residuals at data altitude for the models MF7 (top), CHAOS-6 (middle) and CM5 (bottom). The
colorbar is given in nT.
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Figure 76 Latitudinal residuals at data altitude for the quadratic regularized models using α = 80 nT−2 (top),
α = 100 nT−2 (middle) and α = 200 nT−2 (bottom). The colorbar is given in nT.
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Figure 77 Latitudinal residuals at data altitude for the models MF7 (top), CHAOS-6 (middle) and CM5 (bottom).
The colorbar is given in nT.
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Figure 78 Longitudinal residuals at data altitude for the quadratic regularized models using α = 80 nT−2 (top),
α = 100 nT−2 (middle) and α = 200 nT−2 (bottom). The colorbar is given in nT.
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Figure 79 Longitudinal residuals at data altitude for the models MF7 (top), CHAOS-6 (middle) and CM5 (bottom).
The colorbar is given in nT.
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D.2 Maximum entropy regularized models

Maps of the radial field component at the Earth’s surface

Figure 80 Radial lithospheric field component at the Earth’s surface for the maximum entropy regularized models
using α = 30 nT−2 and ω = 0.02 nT (top), α = 80 nT−2 and ω = 0.01 nT (middle) and α = 500 nT−2 and ω = 0.009 nT
(bottom). The colorbar is given in nT.
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Maps of the intensity field at the Earth’s surface

Figure 81 Lithospheric field intensity at the Earth’s surface for the maximum entropy regularized models using
α = 30 nT−2 and ω = 0.02 nT (top), α = 80 nT−2 and ω = 0.01 nT (middle) and α = 500 nT−2 and ω = 0.009 nT
(bottom). The colorbar is given in nT.
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Maps of the radial field component at 300 km altitude

Figure 82 Radial lithospheric field component at 300 km altitude for the maximum entropy regularized models using
α = 30 nT−2 and ω = 0.02 nT (top), α = 80 nT−2 and ω = 0.01 nT (middle) and α = 500 nT−2 and ω = 0.009 nT
(bottom). The colorbar is given in nT.
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Maps of the intensity field at 300 km altitude

Figure 83 Lithospheric field intensity at 300 km altitude for the maximum entropy regularized models using α =
30 nT−2 and ω = 0.02 nT (top), α = 80 nT−2 and ω = 0.01 nT (middle) and α = 500 nT−2 and ω = 0.009 nT
(bottom). The colorbar is given in nT.
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Residual maps at data altitude

Figure 84 Radial residuals at data altitude for the maximum entropy regularized models using α = 30 nT−2 and
ω = 0.02 nT (top), α = 80 nT−2 and ω = 0.01 nT (middle) and α = 500 nT−2 and ω = 0.009 nT (bottom). The
colorbar is given in nT.

141



Figure 85 Latitudinal residuals at data altitude for the maximum entropy regularized models using α = 30 nT−2

and ω = 0.02 nT (top), α = 80 nT−2 and ω = 0.01 nT (middle) and α = 500 nT−2 and ω = 0.009 nT (bottom). The
colorbar is given in nT.
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Figure 86 Longitudinal residuals at data altitude for the maximum entropy regularized models using α = 30 nT−2

and ω = 0.02 nT (top), α = 80 nT−2 and ω = 0.01 nT (middle) and α = 500 nT−2 and ω = 0.009 nT (bottom). The
colorbar is given in nT.
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D.3 L1-norm regularized models

Maps of the radial field component at the Earth’s surface

Figure 87 Radial lithospheric field component at the Earth’s surface for the L1 regularized models using α = 1 nT−1,
α = 2 nT−1, α = 3 nT−1 and α = 4 nT−1. The colorbar is given in nT.
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Maps of the intensity field at the Earth’s surface

Figure 88 Lithospheric field intensity at the Earth’s surface for the L1 regularized models using α = 1 nT−1,
α = 2 nT−1, α = 3 nT−1 and α = 4 nT−1. The colorbar is given in nT.
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Maps of the radial field component at 300 km altitude

Figure 89 Radial lithospheric field component at 300 km altitude for the L1 regularized models using α = 1 nT−1,
α = 2 nT−1, α = 3 nT−1 and α = 4 nT−1. The colorbar is given in nT.
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Maps of the intensity field at 300 km altitude

Figure 90 Lithospheric field intensity at 300 km altitude for the L1 regularized models using α = 1 nT−1, α = 2 nT−1,
α = 3 nT−1 and α = 4 nT−1. The colorbar is given in nT.
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Residual maps at data altitude
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Figure 91 Radial residuals at data altitude for the L1 regularized models using α = 1 nT−1, α = 2 nT−1, α = 3 nT−1

and α = 4 nT−1. The colorbar is given in nT. 149



Figure 92 Latitudinal residuals at data altitude for the L1 regularized models using α = 1 nT−1, α = 2 nT−1,
α = 3 nT−1 and α = 4 nT−1. The colorbar is given in nT.
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Figure 93 Longitudinal residuals at data altitude for the L1 regularized models using α = 1 nT−1, α = 2 nT−1,
α = 3 nT−1 and α = 4 nT−1. The colorbar is given in nT.

151



D.4 Degree/order plots for model comparisons
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Figure 94 Normalized coefficient differences between mono-QR, mono-ER, mono-L1 and CHAOS-6 (left row) as
well as between the models MF7, CM5, and CHAOS-6 (right row).
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Figure 95 Normalized coefficient differences between mono-QR, mono-ER, mono-L1 and the models MF7 and CM5.
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D.5 Regional plots for model comparisons
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Figure 96 Radial lithospheric field at the Earth’s surface over Australia for the three models mono-QR (top left),
mono-L1 (middle left), mono-ER (bottom left), MF7 up to SH degree n = 133 (top right), CHAOS-6 up to SH degree
n = 120 (middle right) and CM5 up to SH degree n = 120 (bottom right). The color scale is given in nT.
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Figure 97 Radial lithospheric field at the Earth’s surface over Europe for the three models mono-QR (top left),
mono-L1 (middle left), mono-ER (bottom left), MF7 up to SH degree n = 133 (top right), CHAOS-6 up to SH degree
n = 120 (middle right) and CM5 up to SH degree n = 120 (bottom right). The color scale is given in nT.
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Figure 98 Radial lithospheric field at the Earth’s surface over the South Pole for the three models mono-QR (top
left), mono-L1 (middle left), mono-ER (bottom left), MF7 up to SH degree n = 133 (top right), CHAOS-6 up to SH
degree n = 120 (middle right) and CM5 up to SH degree n = 120 (bottom right). The color scale is given in nT.
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Figure 99 Radial lithospheric field at the Earth’s surface over Africa for the three models mono-QR (top left),
mono-L1 (middle left), mono-ER (bottom left), MF7 up to SH degree n = 133 (top right), CHAOS-6 up to SH degree
n = 120 (middle right) and CM5 up to SH degree n = 120 (bottom right). The color scale is given in nT.
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E Additional material for the analysis of regional lithospheric field
models
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E.2 Downward continuation of regional models
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Figure 100 Model estimation of the lithospheric field intensity for different depth values below the Earth’s surface
a = 6371.2 km. The corresponding model values are based on the quadratic regularized (α = 2000 nT−2) NGU-74-75
model results with L = 14 and a source depth of 37 km.
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Figure 101 Model estimation of the three lithospheric field components and the field intensity at 10 km depth
below the Earth’s surface a = 6371.2 km. The corresponding model values are based on the quadratic regularized
(α = 2000 nT−2) NGU-74-75 model results with L = 14 and a source depth of 37 km.
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Figure 102 Model estimation of the lithospheric field intensity for different depth values below the Earth’s surface
a = 6371.2 km. The corresponding model values are based on the quadratic regularized (α = 600 nT−2) Viking-93
model results with L = 16 and a source depth of 39 km.
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Figure 103 Model estimation of the three lithospheric field components and the field intensity at 10 km depth
below the Earth’s surface a = 6371.2 km. The corresponding model values are based on the quadratic regularized
(α = 600 nT−2) Viking-93 model results with L = 16 and a source depth of 39 km.
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F Additional material for Ekofisk case study

Definition of source grid size and depth

Un-regularized models were derived using source depth values between 0 and 100 km and grid refinements
corresponding to a global source amount of Kg = [500, 000 : 500, 000 : 4, 500, 000]. Regarding the respective
model statistics, no major model improvement can be achieved beyond Kg = 3, 500, 000, which henceforth
is the used grid refinement level for equivalent source models of the MAGAN survey. This corresponds to
285 sources used for the model derivation, using only sources with minimal surface distances to the closest
data point below 20 km.
In order to get a first impression of an appropriate source depth value for local field models of the MAGAN
survey, 100 un-regularized inversions are performed with randomly picked depth values between 0 and 100
km. Fig.104 illustrates the corresponding Euclidean norm of the model residuals. No model convergence
can be reached for depth values larger than 55 km. The preferred source depth is now determined using this
maximum depth and the Metropolis Hastings algorithm of section 4.2.1. Figure 105 shows the proposed
and accepted source depth values the MAGAN survey. The probability density functions for the correspond-
ing normal distribution is given in the right part of the figure and reaches its maximum at 53 km source depth.
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Figure 104 Residual 2-norm corresponding to 100 un-regularized models using the MAGAN data set and randomly
picked source depth values between 0 and 100 km. No model convergence can be reached for depth values larger than
55 km. The curve peak corresponds to the original geocentric data altitude of approximately 8 km below the Earth’s
surface.
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Figure 105 Perturbated (grey) and accepted (black) depth values due to the Metropolis Hastings algorithm for 1000
un-regularized model inversions of the MAGAN survey. The corresponding source grid sizes is L = 6. The initial
depth is 10 km and maximum allowed perturbation in depth is ∆δ = 20 km. The right part of the figure gives the
PDF for the normal distributions corresponding to the accepted source depth values. The corresponding peak is
derived for 53 km.
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α = 10 nT−2 α = 100 nT−2 α = 300 nT−2 α = 600 nT−2 α = 1000 nT−2 α = 2000 nT−2

mean ∆F (nT) 0.03 0.02 0.03 0.04 0.04 0.05
RMS ∆F (-) 1.51 1.57 1.62 1.66 1.70 1.76
min Br (nT) -272.56 -143.85 -86.94 -58.14 -37.81 -25.38
max Br (nT) 233.75 179.55 128.48 134.50 141.30 146.89
mean Br (nT) 21.70 33.87 44.15 51.76 57.79 65.85
min Bθ (nT) -252.59 -138.99 -119.77 -110.00 -106.66 -129.33
max Bθ (nT) 557.97 392.93 300.60 226.93 180.12 133.55
mean Bθ (nT) 121.36 86.53 56.88 34.63 17.05 -6.09
min Bφ (nT) -378.64 -281.23 -247.08 -209.19 -169.36 -151.83
max Bφ (nT) 546.56 387.82 259.85 173.60 112.66 113.00
mean Bφ (nT) 115.39 86.51 45.31 23.03 12.44 4.48
min F (nT) -189.52 -158.08 -158.90 -155.65 -149.47 -137.56
max F (nT) 138.20 82.48 58.26 44.42 34.99 23.74
mean F (nT) -64.58 -63.51 -62.08 -61.18 -60.67 -60.31

Table 23 MAGAN quadratic regularized model statistics using 285 sources at 53 km depth. The first two rows (gray)
are direct model results at data locations, while the remaining values correspond to model predictions at the Earth’s
surface.

MAGAN model regularization

Figure 106 illustrates the L-curve corresponding to quadratic regularized MAGAN models using 285 sources
at 53 km depth. The final regularization parameter is chosen to be close to the knee-point of the L-curve,
α = 300 nT−2 and will be used for generating models for upward and downward continuation.
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Figure 106 L-curve for quadratic regularized models using MAGAN data, 285 equivalent sources at 53 km depth.
Corresponding model statistics are given in Table 23.

168



Downward continuation of MAGAN model
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Figure 107 Model estimation of the MAGAN lithospheric field intensity for different depth values below the Earth’s
surface a = 6371.2 km. The corresponding model values are based on the quadratic regularized (α = 300 nT−2) model
results with L = 7 and a source depth of 53 km.
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Figure 108 MAGAN model estimations of the three lithospheric field components and the field intensity at 10 km
depth below the Earth’s surface a = 6371.2 km. The corresponding model values are based on the quadratic regular-
ized (α = 300 nT−2) results with L = 7 and a source depth of 53 km.
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G Additional material for the combined satellite and near-surface
measurement routine

G.1 Source grid of regional near-surface data

In order to determine the most appropriate source distribution for representing the near-surface measure-
ments, un-regularized inversions are performed for seven different grid sizes (Kg = 450000:50000:750000)
and for depth values between 10 km and 200 km. For calculation time efficiency, only NURE-NAMAM2008
data for the region 100-110 deg longitude and 35-40 deg latitude are used. By using every 30th data point,
this corresponds to 9062 measurements in the chosen area. Similar to the regional equivalent source models
of chapter 4, only sources in the vicinity of the survey area are taken into account for the model inversions.
Figure 109 illustrates the residual 2-norm and correlation coefficient values for the derived models. No
model convergence could be reached for source grids Kg > 700000. In order to represent the high resolu-
tion NURE-NAMAM2008 data set, the combined inversion scheme uses the highest possible source amount
of Kg = 700000, which corresponds to approximately 27 km distance between to sources projected to the
surface. Figure 109 shows that models using this source distribution converge up to a source depth value of
60 km. This value is also chosen for the combined inversion scheme, as it results in the most favorable values
for both correlation coefficient and residual 2-norm.
Having a source grid of Kg = 700000 and only using sources within a 2◦ larger boundary margin than the
near-surface data area, the combined data routine works with 29,846 sources corresponding to the NURE-
NAMAM2008 data set.
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Figure 109 Residual 2-norm and correlation coefficient values for un-regularized equivalent source models using
different source depth values and grid refinement levels. All models are based on every 30th magnetic intensity data
point of NURE-NAMAM2008 for 110-100 deg longitude and 35-40 deg latitude.
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G.2 Limited data amount for given source

For ideal inversion conditions, all data values are used to determine the amplitudes of the equivalent point
sources. However, for the current combined inversion scheme, the used amount of measurements and sources
exceeds the computational memory limit when generating GTWG and GTWd. In order to solve this
problem, only data in a certain area around a given source are used for the combined inversion scheme.
The size of this area differs for the two data sets and is defined using an analytical test which investigates
the decay of the Green’s matrix components for increasing distances between a data-source pair. Using
a random source location of 39.71◦N and 94.03◦W (which is within the NURE-NAMAM2008 data area)
a source depth of 180 km and a data altitude of 360 km, the radial component of the Green’s matrix Gr

reaches 1% of its maximal value at a source-data distance of 31◦ (for constant longitude values) and 40◦ (for
constant latitude values). The corresponding results for the near-surface data, using a source depth of 60 km
and a data altitude of 1000 ft above mean sea level, are 3◦ and 4◦ (Gr), 10◦ and 4◦ (Gθ) and and 14◦ (Gφ),
respectively. Table 24 and Figs. 110 and 111 summarize the derived results. The amount of decay for Gsca

is location dependent, but similar to Gr for latitudes like the NURE-NAMAM2008 data set.
Based on the above test, the combined inversion scheme uses satellite measurements which have a maximal
distance (in both latitude and longitude) of 40◦, and NURE-NAMAM2008 data up to 15◦ degrees latitudinal
and longitudinal distance to a given source. This is probably not the most elegant method to circumvent
the problem, but the resulting models are able to fulfill the objective of chapter 5: demonstrating that the
equivalent point source routine can be used for combined global and regional data inversions.

CHAMP NURE-NAMAM2008
const. φ const. θ const. φ const. θ

Gr 31 40 3 4
Gθ 74 171 10 4
Gφ - 93 - 14

Table 24 Source distances [in degrees] corresponding to 1% of the absolute maximal value for Gr, Gθ and Gφ.
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Figure 110 Green’s matrix components showing the decaying values when increasing the distance between a data-
source pair using a data altitude of 360 km and a source depth of 180 km. The dashed lines represent the 3% limit of
the absolute maximum values.
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Figure 111 Green’s matrix components showing the decaying values when increasing the distance between a data-
source pair using a data altitude of 1000 ft a.m.s.l. and a source depth of 60 km. The dashed lines represent the 3%
limit of the absolute maximum values.
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S U M M A R Y
We present a new technique for modelling the global lithospheric magnetic field at Earth’s
surface based on the estimation of equivalent potential field sources. As a demonstration we
show an application to magnetic field measurements made by the CHAMP satellite during
the period 2009–2010 when it was at its lowest altitude and solar activity was quiet. All three
components of the vector field data are utilized at all available latitudes. Estimates of core and
large-scale magnetospheric sources are removed from the measurements using the CHAOS-4
model. Quiet-time and night-side data selection criteria are also employed to minimize the
influence of the ionospheric field. The model for the remaining lithospheric magnetic field
consists of magnetic equivalent potential field sources (monopoles) arranged in an icosahedron
grid at a depth of 100 km below the surface. The corresponding model parameters are estimated
using an iteratively reweighted least-squares algorithm that includes model regularization
(either quadratic or maximum entropy) and Huber weighting. Data error covariance matrices
are implemented, accounting for the dependence of data variances on quasi-dipole latitude.
The resulting equivalent source lithospheric field models show a degree correlation to MF7
greater than 0.7 out to spherical harmonic degree 100. Compared to the quadratic regularization
approach, the entropy regularized model possesses notably lower power above degree 70 and
a lower number of degrees of freedom despite fitting the observations to a very similar level.
Advantages of our equivalent source method include its local nature, the possibility for regional
grid refinement and the production of local power spectra, the ability to implement constraints
and regularization depending on geographical position, and the ease of transforming the
equivalent source values into spherical harmonics.

Key words: Inverse theory; Magnetic anomalies: modelling and interpretation; Magnetic
field; Satellite magnetics.

1 I N T RO D U C T I O N

The magnetic investigation of the lithosphere, covering the Earth’s
crust and upper mantle, is of great importance for many aspects of
Earth science, for example, plate tectonics (Molnar 1988), ocean
ridge spreading, lithospheric thickness (Langel 1998) and histori-
cal meteorite impacts (Plado et al. 2000). Since the era of space
missions, lithospheric magnetic field modelling techniques are also
applicable to the investigation of other objects of our solar sys-
tem, including Mars, Mercury and the Moon (Ness 1979; Conner-
ney et al. 1999; Langlais et al. 2004; Whaler & Purucker 2005;
Purucker & Nicholas 2010). Furthermore, lithospheric field maps
play a significant role in the orientation of subsurface drilling de-
vices (Inglis 1987).

In a source-free region, the geomagnetic field potential may
be represented by harmonic functions, which are solutions of the
Laplace equation. The most widely used functions for global geo-
magnetic field modelling are spherical harmonics (SH). However,
several studies (e.g. O’Brien & Parker 1994; Chambodut et al.

2005) have concluded that local lithospheric features may not be
well represented by an SH representation since the correspond-
ing model parameters are global basis functions that depend on
the entire data set and its associated noise. When modelling the
lithospheric magnetic field, local basis functions may arguably be
more suitable, for instance (depleted) harmonic splines (Langel &
Whaler 1996), wavelet functions (Maisinger et al. 2004; Mayer &
Maier 2006), spherical triangle tessellations (Stockmann et al. 2009)
and equivalent dipole sources (e.g. Covington 1993; Langlais et al.
2004). Another possibility is to use spectral, but domain-limited
basis functions, for example spherical caps (Haines 1985; Thébault
2006, 2008) or spherical Slepians (Beggan et al. 2013). The current
study builds on the method introduced by O’Brien & Parker (1994),
applying equivalent monopole sources to represent the lithospheric
field. Advantages of this method include its ease of application to
data from various altitudes, the possibility to carry out both global
and local modelling, as well as the ease of transformation into a
spherical harmonic form (see Section 2.2). The latter is extremely
useful for comparisons to state-of-the-art spherical harmonic
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models of the global lithospheric field such as the MF7 serial model
(Maus et al. 2008; Maus 2010), the CHAOS-4 model (Olsen et al.
2014) and CM5 (Sabaka et al. 2015), the latest version in the Com-
prehensive Model series. The use of local basis functions has the
further advantage that when data noise is concentrated in specific
regions (e.g. the polar regions), only model parameters in the vicin-
ity are affected, while all model parameters are adversely affected
if global basis functions such as spherical harmonics are used.

In Section 2, we present our formulation of the equivalent source
method. The technique is then applied to a test case involving
CHAMP data from January 2009 to September 2010. CHAMP data
are currently the basis for the best available model of the lithospheric
field (Maus et al. 2008; Maus 2010; Lesur et al. 2013; Sabaka et al.
2015). The CHAMP data and their processing are described in
Section 3. Our model estimation procedure, involving iteratively
reweighted least-squares (IRLS; Constable 1988; Olsen 2002) is
described in Section 4. The approach involves over-parameterizing
the number of monopoles and applying model regularization to
control the model complexity. Following Stockmann et al. (2009),
we test both conventional quadratic regularization (QR) and maxi-
mum entropy regularization (ER) techniques (Gull & Skilling 1999;
Jackson et al. 2007). The former derives models of minimal source
amplitudes, while the maximum entropy regularization models are
characterized by minimal complexity for a given misfit to the obser-
vations. Results and their discussion are presented in Section 5 and
we conclude in Section 6 with some perspectives regarding future
applications of the method.

2 M O D E L L I N G T E C H N I Q U E

We describe the geomagnetic field in a geocentric reference frame by
the spherical coordinates r = (r, θ, φ), where r denotes the radial
distance from the centre of the Earth, θ denotes the geocentric
co-latitude and φ denotes the eastern longitude. Currents in the
ionosphere are neglected and the quasi-stationary approximation is
adopted, such that the magnetic vector field B above the Earth’s
surface is described by a scalar potential B = −∇�(r, θ, φ) where
∇2�(r, θ , φ) = 0. The solution of Laplace’s equation can then
be written as a spherical harmonic expansion. The corresponding
solution for internal geomagnetic sources is usually expressed as

�(r) = a
∞∑

n=0

(
a

r

)n+1 n∑
m=0

[
gm

n cos(mφ) + hm
n sin(mφ)

]
Pm

n (cos θ ),

(1)

where a = 6371.2 km is the reference radius given by the mean
radius of the Earth, Pm

n (cos θ ) are the Schmidt semi-normalized
associated Legendre functions and [gm

n , hm
n ] are the time-dependent

Gauss coefficients of order m and degree n (Blakely 1996).
In this study, we have removed estimates of the core field and

large-scale magnetospheric sources derived from the CHAOS-4
model from the magnetic field observations, hence we are only
concerned with the static lithospheric field component.

2.1 Equivalent source formulation

Having N measurement locations ri = [ri , θi , φi ] (for i = 1, . . . ,
N), the magnetic scalar potential can be modelled as a linear com-
bination of K globally distributed equivalent potential field sources
(monopoles) located at sk = [rk, θk, φk] and with source strength qk

(for k = 1, . . . , K) measured in nT. Following O’Brien & Parker

(1994) and Blakely (1996), the corresponding potential can be
expressed as

�̂(ri ) =
K∑

k=1

qk
r 2

k

rik

=
K∑

k=1

rkqk

∞∑
n=0

(
rk

ri

)n+1

Pn(cos μik), with K < N (2)

where rik = |ri − sk | and μik are the distance and angle between the
position vectors of measurement i and source k, respectively,

rik =
√

r 2
i + r 2

k − 2rirk cos(μik)

cos(μik) = cos(θi ) cos(θk) + sin(θi ) sin(θk) cos(φi − φk). (3)

Applying the decomposition formula for Pn(cos μik) to eq. (2)
(Torge 2001) and employing Schmidt-semi-normalization of the
surface spherical harmonics (Blakely 1996), the potential due to
monopole sources is

�(ri ) =
K∑

k=1

rkqk

∞∑
n=0

(
rk

ri

)n+1

×
n∑

m=0

Pm
n (cos θi )Pm

n (cos θk) cos(mφi − mφk). (4)

Comparing the spherical harmonic and equivalent source poten-
tial expansion (eqs 1 and 4, respectively) enables the conventional
spherical harmonic Gauss coefficients to be obtained directly from
the equivalent source coefficients qk,

gm
n =

K∑
k=1

(rk

a

)n+2
qk Pm

n (cos θk) cos(mφk) (5)

hm
n =

K∑
k=1

(rk

a

)n+2
qk Pm

n (cos θk) sin(mφk). (6)

Note that eqs (5) and (6) provide a means of estimating a local
power spectrum by considering the monopoles only within a region
of interest, implicitly assuming those elsewhere are zero and renor-
malizing the power spectra accounting only for the area considered.

The Mauersberger–Lowes spherical harmonic power spectrum
R(n) due to internal sources, which is the squared magnitude of the
magnetic field averaged over a spherical surface of radius r, is given
by (Lowes 1974)

R(n) = (n + 1)
(a

r

)(2n+4) n∑
m=0

[(
gm

n

)2 + (
hm

n

)2
]
. (7)

All power spectrum illustrations below are given for r = a.
The comparison of two different lithospheric field models, with

different sets of Gauss coefficients, [gm
n , hm

n ] and [g
′m
n , h

′m
n ], respec-

tively, can be visualized using the degree correlation (Langel (1998),
eq. 4.23)

ρ(n) =
∑n

m=0

(
gm

n g
′m
n + hm

n h
′m
n

)
√∑n

m=0

[
(gm

n )2 + (hm
n )2

]∑n
m=0

[(
g′m

n

)2 + (
h ′m

n

)2
] . (8)

Whenever ρ ≥ 0.7, models are usually considered to be well cor-
related (Arkani-Hamed et al. 1994; Sabaka & Olsen 2006). Com-
pared to the power spectra representation, degree correlations give
no information on the magnetic field magnitudes but rather on the
respective phase differences (Olsen et al. 2006).
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Figure 1. Icosahedron grid with refinement level L = 2. The corresponding
sources are placed at the vertices and triangle midpoints. This study applies
L = 5 corresponding to 30 722 source locations.

Another way of illustrating the model differences is by looking at
the relative difference between each coefficient in a degree versus
order matrix, S. For the difference between gm

n and g
′m
n we have

S(n, m) = 100 · gm
n − g

′m
n√

1
(2n+1)

∑n
m=0

[(
g′′m

n

)2 + (
h ′′m

n

)2
] , (9)

and similarly for the corresponding hm
n coefficients. The coefficient

differences are normalized with respect to the mean spectral ampli-
tude of a reference model, with [g

′′m
n , h

′′m
n ] being the corresponding

Gauss coefficients (Olsen et al. 2005, eq. 5.3). Note that the factor
100 in eq. (9) indicates that the normalized coefficient differences
are given in per cent.

We have chosen to use magnetic monopoles as equivalent sources
due to their simplicity and mathematical convenience. Like dipoles,
they are a solution to Laplace’s equation and produce a poten-
tial field (e.g. Toyoshima et al. 2008). However, according to
Maxwell’s equations we have ∇ · B = 0, which means that indi-
vidual monopoles do not exist. Here we use monopoles only as a
mathematical tool for representing the lithospheric magnetic field
models and impose an additional constraint (see Section 4.5) to
ensure that the divergence-free constraint is satisfied.

2.2 Distribution of sources

In this study, we apply an icosahedral grid (Baumgardner & Fred-
erickson 1985) with monopoles placed at both vertices and triangle
midpoints. The corresponding grid size is defined by the source
depth and grid refinement level L. A grid of refinement level L = 0
consists of 20 identical equilateral triangular faces and 12 vertices
on a unit sphere. Each vertex is thereby surrounded by either five
or six faces. Increasing the refinement level by 1, every face is
further subdivided into four triangles, see Fig. 1. In this study, we
use L = 5, consisting of K = 30 722 locations at the vertices and
midpoints, all projected on a sphere of radius a − 100 km so the
distance between the satellite data and the monopoles is greater than

Table 1. Median angular distance and arc length between
two adjacent sources for different icosahedron grid refine-
ment levels L. The arc length is given at the Earth’s surface.
Both vertices and midpoints are taken into account in K.

L K Angular distance (deg) Arc length (km)

3 1922 3.52 391
4 7683 1.75 195
5 30722 0.98 109
6 122882 0.49 54
7 491522 0.24 27

the separation between the monopoles. We have chosen to include
the centre points as a means of grid refinement without resorting to
a higher refinement level, which would result in a large increase in
the number of sources and hence the calculation time.

Table 1 lists the median angular separation between two adja-
cent sources for different grid refinement levels. The values are
calculated from the average distance between sources and their five
nearest neighbours. The applied grid refinement level corresponds
to a median grid spacing of 0.98◦, equivalent to an arc length of
109 km at the Earth’s surface. Synthetic tests demonstrated that for
the regularized models presented here, the surface field results were
not affected by the equivalent source locations.

The chosen source depth of a − 100 km is based on a synthetic
test where the magnetic field signatures at Earth’s surface produced
by monopoles with a horizontal spacing of 1◦ (very close to the
applied angular distance of 0.98◦) were found to be negligible.

3 DATA , P R E - P RO C E S S I N G A N D
E R RO R B U D G E T

CHAMP 30 s three-component vector field data between 2009 Jan-
uary 1 and 2010 September 2 are used in this study. During that
period the satellite was at its lowest altitude (below 300 km) and
solar activity was also rather quiet, making the data particularly
suitable for lithospheric magnetic field studies. Estimates of core
and large-scale magnetospheric sources are removed from the mea-
surements using the geomagnetic field model CHAOS-4, and we
use the same data selection as employed in CHAOS-4 (Olsen et al.
2006, 2014). Important to mention here are the quiet-time condi-
tions (Kp-index ≤20 for quasi-dipole (QD) latitudes equatorward of
±55◦ and the merging electric field at the magnetopause Em ≤ 0.8
mV m−1 for QD latitudes poleward of ±55◦) and dark region data
(sun at least 10◦ below the horizon) selection criteria, which aim to
minimize the influence of the ionospheric field. Further, the con-
tribution from disturbances of the magnetospheric ring current is
minimized by only selecting data with hourly RC-index variations
smaller than 2 nT hr−1 (Olsen et al. 2014).

Our implementation of IRLS assumes independent and Huber
distributed (i.e. Gaussian distributed in the centre, Laplacian dis-
tributed in the tails) residuals. We additionally remove gross outliers
with absolute residual values >100 nT from the data set in an effort
to avoid mapping strongly correlated noise from badly disturbed
tracks into the lithospheric magnetic field models.

Regarding the data error budget, we implement data uncertainties
depending on the QD latitude (Richmond 1995; Emmert et al. 2010)
independently for the three vector field components, Br, Bθ and
Bφ , as shown in Fig. 2. The uncertainties (standard deviations)
σ p (where p = r, θ or φ) are derived using the robust algorithm
of Driessen & Rombouts (2007) applied to residuals (obtained by
subtracting from the data predictions from the CHAOS-4 model,
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Figure 2. Latitude-dependent standard deviation values σ p (where p = r, θ or φ). Values are derived for each QD latitude band of 2◦ (the Northern Hemisphere
is indicated by positive QD latitude values) using the robust procedure of Driessen & Rombouts (2007).

including its core, crustal and external parts) in 2◦ latitudinal bands.
The QD coordinate system is suitable for describing processes due
to unmodelled ionospheric sources, which we assume dominate the
residuals, especially at polar latitudes.

The CHAMP satellite tracks are defined by a near polar orbit
with an inclination of 87.3◦. Thus, there are no data within 2.7◦ of
the poles, which introduces instabilities in the determination of high
degree spherical harmonic zonal coefficients. In order to counteract
this ‘polar gap’ effect, 12 257 synthetic (noise-free) values of the
radial field component are added in the polar regions between ±0.5◦

and 4◦ at 300 km altitude derived from the CHAOS-4l model up
to SH degree n = 60. The synthetic data represent 2.89 per cent of
the total data set. Except for the polar gap regions, we use all three
measurement components in the model derivation. We have also
carried out tests without adding synthetic data in the polar gap and
find very similar results at non-polar gap locations, see Section 5.
This illustrates one advantage of the local nature of our equivalent
source method.

4 M O D E L E S T I M AT I O N

In this section, we describe our scheme for estimating equivalent
source models of the lithospheric field from satellite data. Based
on a regularized IRLS approach, the scheme involves iteratively
minimizing a penalty function measuring both the misfit to the
observations and also the complexity of the model.

In Section 4.1, we present our mathematical formulation of the
inverse problem. The IRLS numerical scheme used to obtain so-
lutions is set out in Section 4.2. Section 4.3 gives the details in
the case that model complexity is measured using a traditional
quadratic norm, and Section 4.4 gives the corresponding details
when an entropy-based measure of model complexity is instead
employed. The method of enforcing the divergence-free condition,
a necessary feature of any scheme based on monopoles, is described
in Section 4.5. The diagnostic measures of model resolution we em-

ploy are given in Section 4.6, and finally a short summary of our
lithospheric field model estimation scheme is given in Section 4.7.

4.1 Formulation of the inverse problem

The magnetic field B due to the equivalent monopole sources mea-
sured at a given location i is calculated using the negative gradient
of eq. (2),

B(ri ) = −∇�̂(ri )

= −
K∑

k=1

qk∇ r 2
k

rik
. (10)

The data for a particular field component p, where p can be r, θ , or
φ, is the projection of B onto the direction given by the unit vector
êp ,

Bi,p = −
K∑

k=1

qk

[
êi,p · ∇p

r 2
k

rik

]

=
K∑

k=1

qk gik,p, (11)

where gik, p are the individual elements of the Green’s matrix repre-
senting the directional derivatives of the kth source evaluated in the
direction p and at the location ri .1 The corresponding full expres-
sions are given in the Appendix.

1
The Green’s matrix elements for equivalent sources are derived in
O’Brien & Parker (1994). However, it appears that the corresponding eqs
(C2) and (C3) contain a typographical error. In formula (C3) we have
changed the signs in front of rs to be negative. In eq. (C2), the formulae
for Bθ (r) and Bφ(r) have been multiplied by −2 and 2, respectively. In
the formula of Br(r), the factor 2 was removed both in the numerator and
denominator.
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Applying the above scheme to all measurements, the forward
problem described by eq. (11) may be written as

B = Gq (12)

where B = [Br , Bθ , Bφ] is a column vector containing model pre-
dictions for all 3N vector components at the N locations of magnetic
field measurements, G = [G

r
, G

θ
, G

φ
] represents the correspond-

ing 3N × K Green’s matrix and q is the model vector of all K source
strengths qk.

The inverse problem then consists of finding a model q that
minimizes the error vector e between the observed data d and the
model predictions B,

d = B + e

= Gq + e (13)

4.2 Regularized IRLS solution

Determination of the lithospheric field at Earth’s surface from noisy
data collected at satellite altitude is an ill-posed and non-unique in-
verse problem. We find solutions to this problem using an IRLS
algorithm (e.g. Walker & Jackson 2000) including model regu-
larization. This involves minimizing both the differences between
model predictions and measurements (a misfit norm) and also a
measure of the model complexity R (regularization norm). The
objective function � we minimize is of the form

�(q) = (d − Gq)T W(d − Gq) + λR(q) (14)

where

W = C−1/2H C−1/2. (15)

The data weight matrix W consists of two parts: (i) a diagonal

inverse data error covariance matrix C−1 = sin θ

σ 2 that accounts for the

expected data error variances σ 2 (see Section 3) and provides equal
area weighting; (ii) a Huber weighting matrix H that depends on the
residuals between the model predictions and the observations (e.g.
Constable 1988). The regularization parameter λ (nT−2) quantifies
the trade-off between the misfit and regularization norm (e.g. Menke
2012). Large λ values result in models of low complexity but with
large residuals, while the opposite is the case for small λ values.

A Newton-type iterative scheme is used to minimize the objective
function of eq. (14), such that the model prediction at the j + 1
iteration is given by

q j+1 = (2GT W
j
G + λ∇∇R(q j ))

−1

× (2GT W
j
d + λ∇∇R(q j )q j − λ∇R(q j )). (16)

A new solution is thus derived from the model q j and the Huber
weights H

j
(that appear in W

j
) from the previous iteration. We iter-

ate eq. (16) until the convergence criterion ‖q j − q j+1‖/‖q j+1‖ <

0.01 is met.
The Huber weights in the diagonal matrix H

j
= [hr, j , hθ, j , hφ, j ]

(e.g. Huber 1964; Constable 1988) are obtained from the residuals
e p, j from the jth iteration, with p = r, θ or φ, normalized by
the expected latitude-dependent standard deviation values σ p from
Fig. 2. Considering the ith vector field observation, the Huber weight
for a given component p is

h p, j (i) =
{

1 if εp, j (i) ≤ 1.5,

1.5/εp, j (i) if εp, j (i) > 1.5
(17)

where

ε p, j = |ep, j/σ p|. (18)

This results in residuals much larger than expected being down-
weighted in the least-squares scheme. The changes in ε p, j with
iteration j are due to changes in the model misfit ep, j , and not to
changes in σ p .

4.3 Quadratic regularization

We consider a very simple form of quadratic regularization, defined
by the Euclidean length of the model solution, RQR(q) = qT q. Min-
imizing the objective function with respect to q then results in the
following simplified version of eq. (16)

qQR
j+1 = (GT W

j
G + λI)−1GT W

j
d. (19)

The corresponding solution has the smallest possible sum of squares
of the monopole values, for a chosen level of misfit. This criterion,
however, may not always be geologically useful, in particular be-
cause there are several very large amplitude local magnetic field
anomalies, for example, the West African Craton anomaly and the
Bangui anomaly. Allowing a model to possess high amplitude local
anomalies, while at the same time retaining a simple morphology,
is possible by regularizing the model entropy rather than its squared
amplitude. This is the subject of the next section. The investigated
quadratic regularization models, with their different λ values, share
the same starting point, a well-converged, but unregularized (λ = 0),
solution.

4.4 Maximum entropy regularization

In order to account for the large amplitudes of local lithospheric
field anomalies, we investigate the effect of regularizing the model
information complexity rather than its amplitude. The entropy reg-
ularization method applied here was previously described in detail
by Jackson et al. (2007) and Stockmann et al. (2009). We note
that maximum entropy regularization is naturally implemented in
the physical domain, rather than in spectral model space; it can
therefore be very easily implemented by considering the entropy of
different arrangements of the equivalent sources.

Gull & Skilling (1999) define the entropy S of a model q, which
can consist of both negative and positive values, as

S(q, ω) =
K∑

k=1

[
ψk − 2ω − qk ln

(ψk + qk

2ω

)]
. (20)

We work with the related negative entropy (negentropy) regulariza-
tion norm (Gillet et al. 2007)

RER(q, ω) = −4ωS(q, ω) (21)

with ω being a default parameter which defines the scale of the en-

tropy function (Maisinger et al. 2004) and ψk =
√

q2
k + 4ω2. The

negentropy RER becomes identical to the quadratic norm for large
values of ω, thus making comparisons between the two regulariza-
tion methods possible. Using RER(q, ω) as the regularization norm,
eq. (16) becomes

qER
j+1 = (2GT W

j
G + λα j )

−1
(
2GT W

j
d + λα j q

ER
j − 4λωβ j

)
(22)
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Figure 3. Power spectra for the investigated quadratically regularized (QR) models with different regularization parameters λ, compared to some recent
lithospheric field models (CM5: Sabaka et al. (2015) and MF7: Maus et al. (2008); Maus (2010)). The model with λ = 928 nT−2, represented by the red line,
is chosen as our preferred model mono-QR. The corresponding lithospheric radial magnetic field at the Earth’s surface is illustrated in the upper part of Fig. 4.

with

α j = diag

(
4ω

ψ1, j
,

4ω

ψ2, j
, . . . ,

4ω

ψK , j

)

β j =
(

ln

(
ψ1, j + q1, j

2ω

)
, ln

(
ψ2, j + q2, j

2ω

)
,

. . . , ln

(
ψK , j + qK , j

2ω

))
. (23)

Converged quadratic regularization models with the same λ were
used as the starting conditions for the investigated maximum en-
tropy models.

4.5 Enforcing the divergence-free condition

Since isolated magnetic monopoles do not exist (∇ · B = 0), we
must also enforce an additional condition that ensures zero net
magnetic flux (O’Brien & Parker 1994)

K∑
k=1

qk = 0. (24)

This requirement can be implemented using a Lagrangian method
by applying the following scheme (Sabaka, private communication,
2011):

qc
j+1 = q∗ − AL(LT q∗)(LT AL)−1

A = (GT W
j
G + λI)−1, (25)

where L is a 1 × K unity row vector and q∗ now represents either a
quadratic (qQR

j+1) or maximum entropy (qER
j+1) unconstrained model

solution from eqs (19) and (22).

4.6 Model resolution and number of degrees of freedom

An important method of quantitatively assessing inversion results
is to compute the model resolution matrix R. This represents the

mapping between the estimated and true model parameters. For
a quadratic regularization, R takes the form (e.g. Bloxham et al.
1989; Menke 2012)

RQR = (GT WG + λI)−1GT WG. (26)

The corresponding linearized approximation for the maximum en-
tropy approach is

RER = (2GT WG + λα)−12GT WG. (27)

A comparison and assessment of the achieved resolution of two
regularized models can thereby be performed. In particular, the
effective number of degrees of freedom may be obtained from the
trace of the respective resolution matrices.

4.7 Summary of model estimation scheme

For convenient reference, we summarize here our model estimation
scheme:

(i) Inputs:
d: the observed vector field magnetic data.
σ p: a priori standard deviations for the data errors (latitude-
dependent for each field component).
λ: the regularization parameter, and ω the entropy default parameter
for ER models.
G: the Green’s matrix connecting the data to the model parameters.

(ii) Initial conditions
Unregularized model (λ = 0): starts from unity Huber weights and
model values q all set to zero.
QR models: start from converged λ = 0 model and corresponding
Huber weights.
ER models: start from converged QR model with same λ and cor-
responding Huber weights.

(iii) Iteration step: model q j+1 from model q j and its associ-
ated Huber weights
Unregularized model: iterate eq. (19) with λ = 0.
QR models: iterate eq. (19), with given and fixed λ.
ER models: iterate eq. (22), with given and fixed λ and ω.
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Table 2. Normalized (by latitude-dependent standard deviation values) and un-normalized Huber-weighted RMS model residual
values between the CHAMP observations and the models MF7 (nmax = 133), CM5 (nmax = 120), CHAOS-4 (nmax = 100), and
a selection of QR models and ER models at satellite altitude. The results for models mono-QR and mono-ER are highlighted

in bold. Here we define �B =
√

�B2
r + �B2

θ + �B2
φ . The suffixes ‘polar’ and ‘non-polar’ represent data of absolute QD

latitudes >55◦ and <55◦, respectively.

MF7 CM5 CHAOS-4 QR models ER models

λ(nT−2) = – – – 4640 928 619 464 928 4640
ω(nT) = – – – – – – – 55 × 10−4 25 × 10−4

Normalized
RMS �Br (−) 1.31 1.34 1.30 1.29 1.29 1.29 1.29 1.29 1.29

RMS �Br polar (−) 1.43 1.45 1.43 1.43 1.43 1.43 1.43 1.43 1.43
RMS �Br non-polar (−) 1.22 1.26 1.21 1.18 1.18 1.18 1.18 1.18 1.18

RMS �Bθ (−) 1.26 1.27 1.26 1.26 1.26 1.26 1.26 1.26 1.26
RMS �Bθ polar (−) 1.38 1.39 1.38 1.38 1.38 1.38 1.38 1.38 1.38

RMS �Bθ non-polar (−) 1.17 1.19 1.17 1.18 1.17 1.17 1.17 1.17 1.18

RMS �Bφ (−) 1.28 1.29 1.27 1.27 1.27 1.27 1.27 1.27 1.27
RMS �Bφ polar (−) 1.43 1.43 1.43 1.42 1.42 1.42 1.42 1.42 1.42

RMS �Bφ non-polar (−) 1.17 1.18 1.16 1.16 1.16 1.16 1.16 1.16 1.16

RMS �B (−) 1.28 1.30 1.28 1.27 1.27 1.27 1.27 1.27 1.27
RMS �B polar (−) 1.41 1.42 1.41 1.41 1.41 1.41 1.41 1.41 1.41

RMS �B non-polar (−) 1.19 1.21 1.18 1.17 1.17 1.17 1.17 1.17 1.17

Un-normalized
RMS �Br (nT) 7.41 7.44 7.39 7.41 7.40 7.40 7.40 7.40 7.41

RMS �Br polar (nT) 11.43 11.44 11.41 11.45 11.44 11.44 11.44 11.44 11.45
RMS �Br non-polar (nT) 1.66 1.71 1.64 1.61 1.61 1.60 1.60 1.60 1.61

RMS �Bθ (nT) 15.81 15.84 15.81 15.81 15.81 15.81 15.81 15.81 15.81
RMS �Bθ polar (nT) 24.52 24.56 24.52 24.51 24.51 24.51 24.51 24.51 24.51

RMS �Bθ non-polar (nT) 2.40 2.42 2.40 2.40 2.40 2.40 2.40 2.40 2.40

RMS �Bφ (nT) 17.29 17.29 17.28 17.26 17.25 17.25 17.25 17.25 17.26
RMS �Bφ polar (nT) 26.91 26.88 26.90 26.86 26.86 26.86 26.86 26.86 26.86

RMS �Bφ non-polar (nT) 2.25 2.27 2.23 2.23 2.23 2.23 2.23 2.23 2.23

RMS �B (nT) 14.19 14.21 14.18 14.17 14.17 14.17 14.17 14.17 14.17
RMS �B polar (nT) 22.05 22.06 22.04 22.02 22.02 22.02 22.02 22.02 22.02

RMS �B non-polar (nT) 2.13 2.16 2.12 2.11 2.11 2.11 2.11 2.11 2.11

Table 3. Similar to Table 2 but with statistics for only part of the African continent (area of the inserted plot
in the left part of Fig. 10). The preferred models mono-QR and mono-ER are highlighted in bold. �B =√

�B2
r + �B2

θ + �B2
φ .

MF7 CM5 CHAOS-4 QR models ER models

λ(nT−2) = – – – 4640 928 619 464 928 4640
ω(nT) = – – – – – – – 55 × 10−4 25 × 10−4

Normalized
RMS �Br (−) 4.05 4.29 4.07 1.20 1.20 1.20 1.20 1.20 1.20
RMS �Bθ (−) 2.10 2.21 2.11 1.11 1.11 1.11 1.11 1.11 1.11
RMS �Bφ (−) 2.52 2.57 2.47 1.15 1.15 1.15 1.15 1.15 1.15
RMS �B (−) 2.85 2.97 2.84 1.15 1.15 1.15 1.15 1.15 1.15

Un-normalized
RMS �Br (nT) 5.32 5.62 5.35 1.57 1.57 1.57 1.57 1.57 1.57
RMS �Bθ (nT) 3.76 3.95 3.79 2.01 2.01 2.01 2.01 2.01 2.01
RMS �Bφ (nT) 4.39 4.48 4.31 2.01 2.01 2.01 2.01 2.01 2.01
RMS �B (nT) 4.42 4.60 4.41 1.88 1.87 1.87 1.87 1.87 1.88

(iv) Implement divergence free condition via eq. (25)
(v) Test convergence criterion

‖q j − q j+1‖/‖q j+1‖

×
{

> 0.01 return to (iii) and start next iteration,

< 0.01 qj+1 is the converged model solution. END.

5 R E S U LT S A N D D I S C U S S I O N

We begin this section by describing the results obtained using the
QR approach. A wide range of regularization parameters were inves-
tigated, and a selection of models from the vicinity of the knee of the
L-curve (Hansen 1998), with regularization parameters λ = 4640,
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Figure 4. Top: lithospheric radial magnetic field corresponding to the preferred quadratic regularization model mono-QR with λ = 928 nT−2 at the Earth’s
surface. Bottom: similar figure for the preferred maximum entropy regularization model mono-ER with λ = 4640 nT−2 and ω = 25 × 10−4 nT. The scale
saturates at 250 nT. Note that both figures are the direct output of the corresponding monopole model rather than an approximation based on a truncated SH
expansion. The corresponding model differences are illustrated in Fig. 8.

928 , 619 and 464 nT−2, were chosen for further analysis. All mod-
els were derived from the same unregularized (λ= 0) starting model,
and they converged within five iterations. The model values q were
then converted into the spherical harmonic Gauss coefficients gm

n

and hm
n using eqs (5) and (6). Fig. 3 illustrates the corresponding

Mauersberger–Lowes power spectra, eq. (7), compared to the state-
of-the-art lithospheric field models CM5 (Sabaka et al. 2015) and
MF7 (Maus et al. 2008; Maus 2010). We observe the expected de-
crease in power at high spherical harmonic degrees with increasing
regularization parameter.

An interesting question is whether our monopole models are
more or less sensitive to the lack of data within the polar gap re-

gions, compared to SH field models which are known to be strongly
affected by this problem above SH degree 60 (Olsen et al. 2014).
We constructed models with and without synthetic data added in
the polar gap regions. Both power spectra and global lithospheric
field maps indicate that the monopole method is not dependent on
having data in the polar gap regions. Differences in the field maps
are only seen in the areas where synthetic data were added, while
the power spectra are almost identical. The lack of sensitivity to the
polar gap problem seems therefore to be an advantage of our models
in comparison to models that are based on spherical harmonics.

Tables 2 and 3 present statistics comparing the fit of the mod-
els to selected CHAMP observations globally and locally (over
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Figure 5. Power spectra for QR models (thin lines) and ER models (thick lines) compared to reference lithospheric field models. Models with the same
regularization parameters are represented with the same colour.

Figure 6. Degree correlation between MF7 and the spherical harmonic degrees of mono-QR, mono-ER and CM5. The monopole-based models reach a typical
correlation limit of ρn = 0.7 (Arkani-Hamed et al. 1994; Sabaka & Olsen 2006) at SH degree n = 100. CM5 correlates well with MF7 up to SH degree
n = 108. The light blue line shows the degree correlation between mono-QR and mono-ER.

part of the African continent), respectively. The corresponding
model residual RMS values are given at satellite altitude and were
derived using the weights implemented in the inversion. The upper
half of the tables normalizes the values by dividing the residu-
als by the measurement error standard deviations of Fig. 2. As
expected, the derived models in general fit the observations bet-

ter than both MF7 and CM5 with the various QR models having
very similar residual values. However, looking at their respective
global lithospheric radial magnetic field maps (not given here), we
observe larger residuals especially in oceanic regions for decreas-
ing regularization parameters. For example, in the Pacific and the
North Atlantic ocean, north–south striping features appear which we
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Figure 7. Normalized coefficient differences between mono-QR and mono-ER.

Figure 8. Lithospheric radial magnetic field difference between the quadratic regularization model mono-QR with λ = 928 nT−2 (5 iterations) and the
maximum entropy regularization model mono-ER with λ = 4640 nT−2 and ω = 25 × 10−4 nT (10 iterations) at the Earth’s surface. Note that the scale saturates
at only 100 nT.

associate with unmodelled magnetospheric field signals still
present in the data set. Taking the power spectra, statisti-
cal comparisons and radial field maps into account, we se-
lect the model with λ = 928 nT−2 to be the preferred

QR model of this study. Henceforth, we refer to this
as model ‘mono-QR’. The corresponding lithospheric radial
magnetic field at the Earth’s surface is presented in the upper part
of Fig. 4.
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Figure 9. Lithospheric radial magnetic field at the Earth’s surface for mono-QR with λ = 928 nT−2, mono-ER with λ = 4640 nT−2 and ω = 25 × 10−4 nT
and the corresponding differences. The illustrated region corresponds to the northwest area of the Indian ocean. Additionally, the individual source locations
are indicated by the black circles in the right panel of the figure.

Figure 10. Left: model prediction for the radial lithospheric magnetic field at the Earth’s surface (on a 0.5◦ × 0.5◦ grid) along an orbital profile at longitude
φ = 17.25◦ crossing the Bangui magnetic anomaly (inserted figure). The result is given for mono-QR (red) and mono-ER (blue) models. Right: histogram
comparing the global statistics of the modelled lithospheric radial magnetic field at the Earth’s surface predicted by mono-QR (red) and mono-ER (blue). The
corresponding surface locations are identical to monopole locations for a grid refinement level L = 7. Standard deviation values are given in the upper part of
the figure.

Next we move on to consider the models derived using the max-
imum entropy regularization (ER) approach. ER models were de-
rived applying the same regularization parameters as in Fig. 3 and
using the respective QR solutions as the starting models. The en-
tropy default parameter ω was initially set to a large value and
then gradually decreased ensuring model convergence at each step.
The presented values of ω are the minimum values for which we
were able to obtain numerical convergence. Fig. 5 shows the power
spectra for both the ER and QR models. As expected, the ER
approach enhances local magnetic field amplitudes, resulting in
slightly larger power at higher spherical harmonic degrees com-
pared to QR models with the same λ. We found it advantageous to
have a starting model with a minimum amount of noise mapped into
the monopole sources. Our preferred ER model is therefore based
on the largest investigated regularization parameter λ = 4640 nT−2

and ω = 25 × 10−4 nT. Henceforth, this model will be referred to as
‘mono-ER’. The lower part of Fig. 4 illustrates the corresponding
radial lithospheric field map at the Earth’s surface. It is notewor-
thy that the oceanic regions are generally of lower amplitude in
mono-ER compared to mono-QR (the mean value of the absolute
radial field magnitude in the oceanic regions is 3.22 nT lower in
mono-ER than in mono-QR), while over large continental anoma-
lies the amplitude in mono-ER can be higher (left panel of Fig. 10
for ∼8◦ north). The global and local differences between mono-QR

and mono-ER are presented in Figs 8 and 9, respectively. The dif-
ferences are globally distributed, with the largest values in the polar
regions, around large local lithospheric field anomalies and in some
specific oceanic regions (e.g. in the mid-Atlantic, north of Brazil
and the Indian ocean). The right panel of Fig. 9 shows an example
of the local differences between mono-QR and mono-ER models
as well as monopole locations projected to the surface of the Earth.
Model differences are generally of larger scale than the distance
between individual sources.

Comparing the statistics for the mono-QR and mono-ER models
(see Tables 2 and 3) we were able to arrive a very similar model
misfit (difference < 0.1 per cent). This is surprising since mono-
ER has much less power at high degree (Fig. 5) with which to fit
observations to the same level as mono-QR.

Fig. 6 presents the degree correlation between MF7 and the mod-
els mono-QR, mono-ER and CM5. The mono-QR and mono-ER
models are well correlated (ρ > 0.7) with MF7 up to SH degree
n = 100, while this value is slightly larger for the correlation be-
tween MF7 and CM5 (n = 108). Fig. 6 also shows that the mono-QR
and mono-ER models are themselves well correlated out to at least
degree 120 (light blue curve).

Another illustration of the differences between models mono-
QR and mono-ER is shown in Fig. 7. After transforming the model
results to the SH domain, the Gauss coefficient differences are here
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Figure 11. Radial field residuals between the CHAMP data and the mono-QR (red) and mono-ER (blue) models. Differences between the models are shown
in black. The y-axis is nonlinear and proportional to 8

π
arctan(y/5) nT in order to emphasize near-zero values.

considered in a degree/order plot. The differences are normalized
by the mean spectral amplitude of the MF7 coefficients according to
eq. (9). The models start to differ notably above SH degree 60, partly
because there is then much less power in the mono-ER compared
with the mono-QR model. However, even at higher degree, the
differences remain relatively small, in the range of 10 per cent. We
attribute the differences between mono-QR and mono-ER shown
here primarily to the applied regularization. Additionally, interesting
vertical stripes are observed especially between degrees 60 and 95
in Fig. 7. These features are due to north–south directed structures
which are especially seen in the oceanic regions of Fig. 4, being
most prominent in model-QR (Fig. 9).

The right part of Fig. 10 presents the global surface radial mag-
netic field distribution of mono-QR and mono-ER by means of a
histogram. The corresponding surface grid locations are identical to
the monopole source locations for a grid refinement level L = 7. It
illustrates that the mono-ER model predicts more field values closer
to zero compared to the QR counterpart, while at the same time the
ER model still allows larger field amplitudes where locally required
by the data. The latter point is best appreciated by considering
the maximum and minimum global radial field values, which are
577 nT and −893 nT for mono-QR and 727 nT and −1078 nT
for mono-ER (note that the long tails of the mono-ER distri-
bution are difficult to see in Fig. 10 due to the scale). In sta-
tistical terminology, the ER approach follows a more Laplacian
distribution, as expected for crustal field anomalies (Walker &
Jackson 2000).

The left part of Fig. 10 shows the surface radial magnetic field
values along a constant longitude crossing the Bangui anomaly.
Despite the similar morphology of the anomalies, the mono-ER
model has smaller field amplitudes in regions with weak magnetic
anomalies and sometimes has larger amplitudes than the mono-QR
model over the large magnetic anomalies.

Fig. 11 illustrates the derived model residuals for mono-QR and
mono-ER with respect to the corresponding QD latitudes. Differ-
ences between the individual model values are shown in black and
emphasize the very similar model predictions as already seen in the
previous figures as well as Tables 2 and 3.

We also derived the model resolution matrices for mono-QR
and mono-ER. From the respective traces we found the number of
degrees of freedom for models mono-QR and mono-ER to be 11635
and 9515, respectively, that is, mono-ER is able to obtain almost the
same fit to the observations as mono-QR but with almost 20 per cent
fewer effective degrees of freedom.

Overall we find that, compared to traditional SH models and the
mono-QR model, the mono-ER model requires a smaller number
of degrees of freedom to achieve the same level of fit to the ob-
servations and possesses Laplacian statistics with a small number
of anomalies of high amplitude and many regions with very weak
anomalies. The latter corresponds well with the lithospheric field
expectations based on satellite, airborne and marine data (Thébault
et al. 2010).

6 C O N C LU S I O N S A N D O U T L O O K

We have presented a new method for modelling the global litho-
spheric magnetic field at the Earth’s surface based on an icosahedral
grid of equivalent monopole sources. We obtained model solutions
by iterative least squares, with Huber weighting of misfit values
and latitude-dependent data uncertainties implemented for all three
vector field components at all latitudes. The approach was tested
using CHAMP satellite data spanning the period 2009–2010.

Both QR and ER approaches based on monopole modelling
were investigated. The former involves minimizing the Euclidean
norm of the model parameters, while the maximum entropy ap-
proach minimizes an information-based measure of complexity.
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The obtained model results have been compared statistically and by
looking at the corresponding radial magnetic field values globally
and locally at the Earth’s surface. The preferred mono-QR and
mono-ER models show very similar misfits, but the ER approach
allows for larger lithospheric magnetic field values locally where
there are strong anomalies, while at the same time favouring weaker
values in oceanic regions in agreement with geological expectations.
Furthermore, the mono-ER model has a much smaller number of
degrees of freedom. The derived models correlate satisfactorily with
MF7 up to SH degree n = 100.

The method does not involve spherical harmonics and is therefore
also suitable for local geomagnetic field investigations with higher
resolution. Nonetheless, whenever needed, the equivalent source
model parameters can easily be transformed into spherical harmon-
ics. Interestingly, eqs (5) to (6) can be used to produce spherical
harmonic models and power spectra specifically for regions of in-
terest, by retaining only the equivalent sources inside that region,
and implicitly setting the amplitude of the remaining sources to zero.
Note that the R-SCHA (Thébault & Vervelidou 2015) and spherical
Slepian function (Beggan et al. 2013) approaches can also be used
to derive local power spectra.

Future applications will make use of Swarm data in combination
with high-resolution aeromagnetic measurements. For the latter,
local refinement of the monopole grid will be implemented in the
modelling approach.

Extending the method to also handle field differences, approxi-
mating gradients, along and across satellite tracks (Kotsiaros et al.
2015; Olsen et al. 2015) should lead to further improvements of the
lithospheric field models, but this will require a more sophisticated
treatment of the data covariance matrix C.
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A P P E N D I X : G R E E N ’ S M AT R I X
C O M P O N E N T S

The Green’s matrix G represents the linear relationship between the
magnetic monopole sources q and the corresponding lithospheric
magnetic field B,

B = Gq
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where i and k represent a given lithospheric magnetic field prediction
and the equivalent source index, respectively.

The general formula for a given element p (for p = r, θ or φ) of
the Green’s matrix is
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SUMMARY
We derive a new model, named LCS-1, of Earth’s lithospheric field based on four years (Sept
2006 – Sept 2010) of magnetic observations taken by the CHAMP satellite at altitudes lower
than 350 km, as well as almost three years (April 2014 to December 2016) of measurements
taken by the two lower Swarm satellites Alpha and Charlie. The model is determined entirely
from magnetic “gradient” data (approximated by finite differences): the North-South gradient
is approximated by first differences of 15 second along-track data (for CHAMP and each of the
two Swarm satellites), while the East-West gradient is approximated by the difference between
observations taken by Swarm Alpha and Charlie. In total, we used 6.2 mio data points.
The model is parametrized by 35,000 equivalent point sources located on an almost equal-
area grid at a depth of 100 km below the surface (WGS84 ellipsoid). The amplitudes of these
point sources are determined by minimizing the misfit to the magnetic satellite “gradient” data
together with the global average of |Br| at the ellipsoid surface (i.e. applying a L1 model
regularisation of Br). In a final step we transform the point-source representation to a spherical
harmonic expansion.
The model shows very good agreement with previous satellite-derived lithospheric field mod-
els at low degree (degree correlation above 0.8 for degrees n ≤ 133). Comparison with in-
dependent near-surface aeromagnetic data from Australia yields good agreement at horizontal
wavelengths down to 250 km, corresponding to spherical harmonic degree n ≈ 160.
The LCS-1 vertical component and field intensity anomaly maps at Earth’s surface show sim-
ilar features to those exhibited by the WDMAM2 and EMM2015 lithospheric field models
truncated at degree 185 in regions where they include near-surface data and provide unprece-
dented detail where they do not. Example regions of improvement include the Bangui anomaly
region in central Africa, the west African cratons, the East African Rift region in the continents
and the Bay of Bengal, the southern 90◦ E ridge, the Cretaceous quiet zone south of the Walvis
Ridge and the younger parts of the South Atlantic.

Key words: Geomagnetism, Earth’s magnetic field, Satellite, CHAMP, Swarm, Spherical har-
monics, Lithosphere

1 INTRODUCTION

Determination of global lithospheric field models requires accurate magnetic field observations with global coverage, which can only be
obtained by satellites. Consequently, the construction of lithospheric magnetic field models is one of the main objectives of satellite missions
such as CHAMP and Swarm. During the past decade a number of global lithospheric field models have been determined from data collected
by these satellites (e.g., Thébault et al. 2016). In one class of models the lithospheric field is co-estimated together with other magnetic
sources (e.g. from the core and magnetosphere) in a comprehensive approach; such models include the Comprehensive Model (CM) series
(e.g., Sabaka et al. 2004, 2015), the GRIMM models (e.g. Lesur et al. 2008, 2015), the BGS model series (e.g. Thomson & Lesur 2007;
Thomson et al. 2010), and the CHAOS model series (e.g. Olsen et al. 2014; Finlay et al. 2016). Models of the other class are derived in
a sequential approach by first removing a-priori models of all known magnetic field contributions, except for the lithospheric field, from
the magnetic field observations, followed by a careful data selection and application of empirical corrections. The MF model series (e.g.
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Maus et al. 2002, 2008; Maus 2010) are examples of models determined using this approach; other examples are the models determined by
Stockmann et al. (2009), Kother et al. (2015) and Thébault et al. (2016).

The MF7 model developed by Maus and co-workers is one of the most widely used global lithospheric field models. It formally describes
the lithospheric field up to spherical harmonic degree n = 133 (corresponding to 300 km horizontal wavelength), and has been derived from
along-track filtered CHAMP magnetic field observations after removal of a-priori models of the core and large-scale magnetospheric fields
and of the ocean tidal magnetic signal, and line levelling between adjacent satellite tracks and nearby orbit cross-overs to minimise the
variance between observations within a certain distance. Coefficients above n > 80 are damped (regularised) by minimizing the L2 norm of
the radial magnetic field, which means minimising B2

r averaged over the Earth’s surface.
As an alternative to the L2 norm of Br , other regularisation schemes have also been used: Stockmann et al. (2009) and Kother et al.

(2015) applied a maximum entropy regularisation (of Br and equivalent source amplitudes respectively), while Morschhauser et al. (2014)
used a L1 model regularisation (of Br) for modelling the lithospheric field of Mars.

Lithospheric field models differ also in their model parametrisation. Whilst most models (including MF7) estimate the coefficients of
a spherical harmonic expansion of the magnetic potential, alternatives have been explored. These include spherical triangle tessellations of
Br (Stockmann et al. 2009), (depleted) harmonic splines (Langel et al. 1996), equivalent dipole sources (e.g. Mayhew 1979; von Frese et al.
1981; Dyment & Arkani-Hamed 1998), spherical caps (e.g. Haines 1985; Thébault 2006, 2008) and an equivalent source method involving
monopoles (O’Brien & Parker 1994; Kother et al. 2015).

In this article we present a new global model of the lithospheric field that has been derived using more satellite magnetic observa-
tions (utilizing four years of data from CHAMP and three years from Swarm) than in previous models, using an equivalent source model
parametrisation consisting of 35,000 point sources (monopoles), and using a model regularisation that minimises the global average of |Br|
at the ellipsoid.

Low altitude magnetic field measurements are crucial for constructing high quality lithospheric field models, due to the attenuation of
the lithospheric signal with altitude. This is obvious from Figure 1 which shows the Lowes-Mauersberger spatial spectrum of the lithospheric
field at various altitudes as given by the MF7 lithospheric model (Maus 2010).

At Earth’s surface, the spectrum is essentially “flat” (i.e. independent of n) in the presented wavelength range (λ = 300 to 2500 km),
whereas it strongly decreases with increasing harmonic degree n at satellite altitude. Focusing e.g. on lithospheric structures with horizontal
wavelength λ = 400 km (corresponding to spherical harmonic degree n = 100), the mean lithospheric amplitude when averaging over
Earth’s surface is about 7 nT, whereas it is only 56 pT at 300 km altitude, which was the altitude of the CHAMP satellite during the last
few months of the mission. At 450 km altitude, which is the present altitude of the lower Swarm satellite pair, the lithospheric signal is only
5.8 pT, 10 times weaker than at 300 km altitude. The attenuation with altitude is even stronger at higher spherical harmonic degrees.

Extracting the weak lithospheric signal from the satellite magnetic field observations is thus a major challenge which requires sophisti-
cated statistical methods and data processing schemes. Spatial gradient information on the magnetic field, approximated by finite differences
of measurements taken at nearby locations, help in removing the large-scale magnetic field contributions from the core and magnetosphere
(and residuals of these effects in the data), and enhance the lithospheric signal. The lithospheric model that we present here relies entirely
on such gradient information. We denote our new model as LCS-1 (Lithospheric model derived from CHAMP and Swarm satellite data,
version 1).

Section 2 describes the data set that was used to derive and assess the lithospheric field model, and section 3 presents how the model
is parametrized. Results are discussed in section 4, which also includes an investigation of the information content of the different data sets,
thereby assessing the contribution of Swarm satellite data to the model. A discussion of the new lithospheric model is given in section 5. The
paper concludes with a summary and outlook in section 6.

2 DATA

We use magnetic observations collected by the CHAMP and Swarm satellite missions. CHAMP (e.g. Maus 2007) was launched in July 2000
into a near polar (inclination 87.2◦) orbit with an initial altitude of 454 km above a mean radius of a = 6371.2 km and had its atmospheric
re-entry in September 2010. Altitude during the last four years of the mission was 350 km or lower, which makes this data set particularly
interesting for lithospheric field modelling.

The satellite constellation mission Swarm (e.g. Friis-Christensen et al. 2006; Olsen et al. 2016b) was launched in November 2013. It
consists of three identical spacecraft, two of which, Swarm Alpha and Swarm Charlie, fly closely together in near-polar orbits of inclination
87.4◦ at an altitude of about 450 km (as of March 2017). The East-West separation of their orbits is 1.4◦ in longitude, corresponding to
155 km at the equator. The third satellite, Swarm Bravo, flies at a slightly higher (about 520 km altitude in March 2017) orbit of inclination
88◦. For our modelling effort we only use data from the two lower satellites Swarm Alpha and Charlie.

We selected CHAMP data from the four years September 2006 to September 2010 and from the lower Swarm satellite pair between
April 2014 (since then the two lower satellites are flying in constellation) and December 2016. The top panel of Figure 2 shows mean altitude
(red curve) and altitude range (red shaded) of the satellites together with solar flux F10.7 (blue) w.r.t. time. The sudden increase in CHAMP
altitude in 2009 is due to an orbit manoeuvre.

Unmodeled large-scale magnetospheric field contributions are one of the largest sources of noise for lithospheric field modelling, and
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Figure 1. Spatial power spectrum of the lithospheric field at Earth’s surface (black curve) and at various altitudes of CHAMP (red) and Swarm (blue), as given
by the MF7 field model of Maus (2010). λn is the horizontal wavelength corresponding to degree n in a spherical harmonic expansion of the field.

various techniques have been used to eliminate these unwanted features from the data (see Thébault et al. (2016) for a recent overview).
Often used techniques include high-pass filtering of the satellite magnetic field observations on an orbit-by-orbit basis and line levelling (e.g.,
Maus 2010). But such pre-processing of the data also removes part of the lithospheric signal, as demonstrated e.g. by Thébault et al. (2012).

However, large-scale magnetic field contributions such as those produced by magnetospheric currents are effectively reduced in gradient
data compared to the magnetic field itself, which increases the lithospheric signal-to-noise ratio in gradient data. By relying entirely on
gradient data, as done here, it is therefore possible to construct lithospheric field models without orbit-by-orbit high-pass filtering or line
levelling.

Use of gradient data for lithospheric field modelling has several advantages: a) since gradient data are less affected by (large-scale)
external field contributions it is possible to include data from times of higher geomagnetic activity, which increases the amount of times with
data suitable for lithospheric modelling by up to 50%; b) gradient data are less correlated in time compared to field data, which enables a
higher data sampling rate compared to field data. This further increases the amount of useful data for lithospheric field modelling.

For estimating our lithospheric model we entirely rely on horizontal difference data (which we in following denote as “gradient data”);
we do not use magnetic field observations directly. Note, however, that magnetic field observations of course are used (differenced) when
deriving the magnetic gradient data.

2.1 Selection of gradient data for model estimation

We select our data using similar selection criteria to those used for constructing the CHAOS-6 (Finlay et al. 2016) model; however, for the
present model we sub-sampled the nominal 1 Hz data (Level-3 data for CHAMP, and Level-1b version 05 data for Swarm) at 30 s intervals
(instead of the 60 sec sampling used for CHAOS-6).

Vector and scalar gradient data are selected for periods when (a) the strength of the magnetic signature of the magnetospheric ring
current, described using the RC index (Olsen et al. 2014), changes by at most 3 nT/h; and (b) when the geomagnetic activity index Kp ≤ 30

for quasi-dipole (QD) latitudes (Richmond 1995) equatorward of ±55◦. Vector gradient data are only taken from non-polar (QD latitudes
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Figure 2. Top: Altitude of the CHAMP and Swarm satellites (red), and 27-day averages of solar flux index, F10.7 (blue). The shaded red regions indicate the
altitude range. Bottom: Total number of satellite data (stacked histogram) as a function of time, for bins of 2 months length.

equatorward of ±55◦), while scalar gradient data are also taken from polar regions. Only data from dark regions (sun at least 10◦ below the
horizon) are chosen with the exception of North-South scalar gradient data for which we also include data from sunlit (i.e. dayside) regions.
However, we do not use any dayside data at QD-latitudes< ±10◦ to avoid contamination by the Equatorial Electrojet, following the strategy
described by Olsen et al. (2015, 2016a).

For each of the three satellites (j denotes CHAMP, Swarm Alpha or Swarm Charlie), the North-South (NS) gradient is approximated
by the difference δBNS = B(tj , rj , θj , φj) − B(tj + 15secs, rj + δr, θj + δθ, φj + δφ) using subsequent data measured by the same
satellite 15 secs later, corresponding to an along-track distance of ≈ 115 km (≈ 1◦ in latitude). B may be either the scalar intensity F or
one of the three magnetic vector components (Br, Bθ, Bφ). Here tj , rj , θj , φj , are time, radius, geographic co-latitude and longitude of the
observation, respectively.

The East-West (EW) gradient is approximated by the difference δBEW = BA(t1, r1, θ1, φ1) − BC(t2, r2, θ2, φ2) of the magnetic
observations taken by Swarm Alpha and Charlie. For each observation BA (from Swarm Alpha) fulfilling the above selection criteria we
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Figure 3. Assigned data uncertainties σ for the CHAMP (left) and Swarm (middle and right) satellite gradient data, in dependence on QD latitude. Left:
CHAMP Along-track “gradient” (15 sec finite difference) data, approximating the North-South gradients δFNS, δBNS. Middle: same, but for Swarm. Right:
East-West “gradient” data (difference between simultaneous observations of Swarm Alpha and Charlie) δFEW, δBEW. The thin blue curves represent
estimated scalar gradient data uncertainties for sunlit conditions.

selected the corresponding value BC (from Swarm Charlie) that was closest in co-latitude θ, with the additional requirement that the time
difference |δt| = |t1 − t2| between the two measurements should not exceed 50 secs.

The bottom panel of Figure 2 shows the number of data points in bins of 2-months length in time. The amount of Swarm data is twice
that of the CHAMP data, owing to the availability of EW gradient data which is unique to the Swarm constellation mission. In total we use
5.2 mio NS gradient data δFNS, δBNS (2.4 mio from CHAMP and 2.8 mio from Swarm), and 0.95 mio EW gradient data δFEW, δBEW

(Swarm only). This amounts to 6.2 mio data points in total.
We removed from all the magnetic observations predictions of the core field (up to spherical harmonic degree n = 14) and of the

large-scale magnetospheric field as given by the CHAOS-6 x2 model (which is an extension of the model described in Finlay et al. (2016)).
In the following, we will denote as “data” these differences between magnetic observations and model predictions.

We assign to each data point a data uncertainty that depends on QD latitude. These data uncertainties have been determined from the
residuals of the data (observations minus core, crustal and magnetospheric field contributions) w.r.t. the CHAOS-6-x2 model by binning the
residuals in QD latitudinal bins of 5◦ width and estimating standard deviation σ using a robust approach (Huber weighting). Figure 3 shows
the assigned data uncertainties for the various data sources and for the CHAMP (left) and Swarm (middle and right) satellites.

2.2 Selection of magnetic field data for model assessment

For testing and evaluation purposes we selected a data set of magnetic field observations B and F , using data selection criteria similar to
those used for constructing the CHAOS-6 model (Finlay et al. 2016). Since magnetic field data are more influenced by un-modelled external
field contributions compared to gradient data it is necessary to restrict to periods of lower geomagnetic activity when selecting field data
compared to selecting gradient data. Following Olsen et al. (2015) we take magnetic field data only during extremely quiet conditions when
the RC index change by at most 2 nT/h (for gradient data we allow for changes up to 3 nT/hr) and when the geomagnetic activity index
Kp ≤ 20 (for gradient data we allow values for Kp ≤ 30). As for gradient data we take vector magnetic field observations only from
non-polar latitudes while scalar field data are used only in the polar regions.

In order to minimise temporal correlation of the data we down-sampled the field values to 2 minutes. This yields 72,000 polar scalar
data (35,500 from CHAMP and 36,500 from Swarm) and 250,000 vector triplets (120,000 from CHAMP and 130,000 from Swarm). Note
that this data set has not been used in the construction of the final LCS-1 lithospheric model.

3 MODEL PARAMETRISATION AND ESTIMATION

We describe the lithospheric magnetic field B = −∇V using a magnetic scalar potential V of internal origin. Following O’Brien & Parker
(1994) and Kother et al. (2015), V is modelled as a linear combination of K equivalent potential field sources (monopoles) of amplitudes qk,
located at the positions sk = [rk, θk, φk], k = 1, . . . ,K where r, θ, φ are spherical coordinates. The potential at the position of the N data
positions ri = [ri, θi, φi], i = 1, . . . , N produced by the superposition of the K point sources is

V (ri) =

K∑

k=1

qk
r2k
rik

(1)



6 OLSEN ET AL.

where rik = |ri − sk| and µik are the distance and angle between the position vectors of the observations, ri, and of the point sources sk,
respectively;

rik =
√
r2i + r2k − 2rirk cos(µik) (2a)

cos(µik) = cos(θi) cos(θk) + sin(θi) sin(θk) cos(φi − φk). (2b)

We use K = 35, 000 point sources placed horizontally on an approximately equal area grid defined by the “Recursive Zonal Equal
Area (EQ) Sphere Partitioning” algorithm of Leopardi (2006). The angular distance d between each point and its nearest neighbours varies
between 1.07◦ and 1.1◦, with a median value of 1.088◦ corresponding to 120.7 km at the Earth’s surface. Essentially the same value is
found by dividing Earth’s surface 4πa2 (approximated by a sphere of radius a) into K quadratic tesseroids of equal size d2, which results in
d = a

√
(4π/K) = 120.7 km. The depth of the point sources is chosen as 100 km below the Earth’s surface as given by the World Geodetic

System 1984 (WGS84) ellipsoid.
Collecting the magnetic field observations (Br,i, Bθ,i, Bφ,i), i = 1, . . . , N in the data vector dB, and the strength of the point sources,

qk, k = 1, . . .K, in the model vector m results in the linear relationship

dB = GBm . (3)

The elements of the data kernel matrix GB are given in Appendix A of Kother et al. (2015).
Scalar data (i.e. magnetic field intensity) were treated by projecting the elements of the kernel matrices GB,r,GB,θ,GB,φ describing

the vector field components at data location ri on the unit vector B̂ = Bmod/|Bmod| of the ambient core field (given by the CHAOS-6 core
field model for spherical harmonic degrees n = 1− 14) at that location.

Gradient data were handled in a manner similar to that described in Kotsiaros et al. (2015) by taking the difference of the kernel matrices
GB corresponding to the two positions (r1, θ1, φ1) and (r2, θ2, φ2).

Collecting the observations of vector gradient δB and scalar gradient δF in the data vector d, we follow Farquharson & Oldenburg
(1998) in estimating the model vector m by minimising the cost function Φ = Φdata + α2Φmodel consisting of the sum of the data misfit
norm eTWde and the model regularisation norm α2mTRm:

Φ = eTWde + α2mTRm (4)

where e = d−Gm is the data misfit vector (difference between data d and model predictions dmod = Gm), Wd is the diagonal data
weight matrix with elements w/σ2 (where σ2 are the data variances as shown in Figure 3 and w are the robust data weights), and R is a
model regularisation matrix which results in the minimization of the global average of |Br| at Earth’s surface ellipsoid. The parameter α2

defines the relative weighting of data misfit vs. model regularisation and thus controls the amount of model regularisation.
For constructing the model regularisation matrix R we synthesize, for a given model m, the radial magnetic field Br at 50,000 equally

distributed locations on the Earth’s surface (ellipsoid, median spacing 100× 100 km); collecting these values in the vector b = {Br} allows
us to write this transformation in matrix form as b = Am. The model regularisation matrix used in our scheme to implement the L1 norm
is then iteratively found as R = ATWmA where Wm is a diagonal matrix with elements 1/(B2

r + ε2), where ε = 10−6 nT is Ekblom’s
parameter (Farquharson & Oldenburg 1998).

We minimise the cost function eq. (4) by Iteratively Reweighted Least Squares using data weights w defined by Tukey’s bi-weight
function with tuning constant c = 4.5 (Farquharson & Oldenburg 1998). Both Wd and R are updated in each iteration until convergence.
The iteration is terminated when the norm of the model change was less than 0.01% of the model norm. To ensure that the divergence of the
magnetic field vector is zero, the sum over all monopole amplitudes has to vanish,

∑K
k=1 qk = 0; this constraint is handled by the method

described in section 4.5 of Kother et al. (2015).
In a final step we transform the point-source representation to a spherical harmonic expansion. Noting that the potential V of eq. (1) can

also be described by a spherical harmonic expansion

V (ri, θi, φi) = a

∞∑

n=1

n∑

m=0

(gmn cosmφi + hmn sinmφ)

(
a

ri

)n+1

Pmn (cos θi), (5)

the Gauss coefficients (gmn , h
m
n ) are related to the point-source amplitudes qk by means of (cf. eq. 5+6 of Kother et al. 2015)

gmn =

K∑

k=1

(
rk
a

)n+2

qkP
m
n (cos θk) cos(mφk) (6a)

hmn =

K∑

k=1

(
rk
a

)n+2

qkP
m
n (cos θk) sin(mφk). (6b)

Collecting the Gauss coefficients in the vector g = {gmn , hmn }, this relationship can be written in matrix form as

g = Dm. (7)

We will use the transformation matrix D in section 4.2 in our discussion of the formal variances of the spherical harmonic expansion
coefficients.
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Table 1. NumberN of data points, (Tukey-weighted) mean and rms misfit (in nT) of NS scalar (δFNS) and vector (δBr,NS, δBθ,NS, δBφ,NS) gradient data,
and of EW scalar (δFEW) and vector (δBr,EW, δBθ,EW, δBφ,EW) gradient data, at polar (> ±55◦) and non-polar (< ±55◦) QD latitudes and for dark
(sun at least 10◦ below horizon) and sunlit conditions.

CHAMP Swarm Alpha Swarm Charlie Swarm Alpha – Charlie
N mean rms N mean rms N mean rms N mean rms

δFNS,polar 491767 -0.03 1.50 283355 -0.04 1.38 283430 -0.05 1.37
δFNS,non−polar,dark 691933 -0.01 0.13 416965 -0.00 0.14 417455 -0.00 0.14

δBr,NS,dark 469839 0.00 0.29 261843 -0.00 0.22 262195 -0.00 0.23
δBθ,NS,dark 469839 -0.00 0.31 261843 -0.00 0.24 262195 -0.00 0.25
δBφ,NS,dark 469839 -0.00 0.36 261843 -0.00 0.29 262195 -0.00 0.30

δFNS,non−polar,sunlit 759368 0.01 0.34 456084 0.01 0.31 455305 0.01 0.31

δFEW,polar 279628 -0.20 0.93
δFEW,non−polar,dark 414730 -0.07 0.27

δBr,EW,dark 259111 -0.00 0.42
δBθ,EW,dark 259111 0.00 0.44
δBφ,EW,dark 259111 0.01 0.57

4 RESULTS

4.1 Model statistics

We estimated models using different combination of data sets, including models that are only determined from low-altitude CHAMP data,
models that are determined from field and gradient data (using a combination of the data sets described in sections 2.1 and 2.2), and models
that do not make use of East-West gradient data. The models were assessed by visual inspection of maps of Br and F at Earth’s surface,
by their spatial power spectra shown later, and by their formal model covariances (details are given below in subsection 4.2). From these
investigations we conclude that a model determined entirely from magnetic gradient data (no direct use of magnetic field data) using a
regularisation parameter α2 = 3 gave the most promising result. In the following we will concentrate on that model, which we refer to as
LCS-1.

Table 1 lists the number of data points, together with means and root mean squared (rms) misfit values. Means and rms are the weighted
values calculated from the model residuals e = d − dmod using the robust Tukey weights w obtained in the final iteration. RMS misfits
of the nightside non-polar scalar gradient data are impressive: 0.14 nT for the NS gradient of all three satellites, and 0.27 nT for the EW
gradient data. The dayside rms misfits are slightly higher (0.31 to 0.34 nT for the NS gradient) due to enhanced ionospheric contributions. As
expected, the rms misfit is also higher in the polar regions: 1.37 nT for Swarm and 1.50 nT for CHAMP for the along-track gradient δFNS,
and 0.93 nT for the EW gradient δFEW. The rms misfit of the (non-polar) vector gradient data is slightly higher compared to scalar gradient
data, varying between 0.23 nT and 0.36 nT for the NS gradient and between 0.42 nT and 0.57 nT for the EW gradient.

These numbers refer to the data that have been used to construct the final LCS-1 model. The difference between LCS-1 model predictions
and magnetic field values (cf. section 2.2) that have not been used in model determination yields weighted rms values of about 4.5 nT for the
scalar field in polar regions and of 1.4 nT to 2.8 nT for the vector components at non-polar latitudes.

All these numbers demonstrate the high quality and consistency of the satellite data, and thereby also of the lithospheric model derived
from these data.

4.2 On the contribution of Swarm constellation data

The LCS-1 model includes, in addition to along-track (North-South) gradient data from the CHAMP satellite, North-South and East-West
gradient data as provided by the Swarm satellite constellation. However, the Swarm spacecraft are presently at much higher altitude (450 km)
than CHAMP during its final years (< 350 km), and Swarm therefore measures a much weaker lithospheric signal than CHAMP. The
question therefore arises how much do the Swarm satellite data contribute to the combined model, and whether or not they improve on a
CHAMP-only model given the higher altitude of Swarm.

In order to investigate this we construct the model covariance matrix Cm for models determined using different data set combinations.
The diagonal elements of Cm contain the variances σ2

m of the model parameters and enable an assessment of the relative contributions
from the various data sets. A similar approach has been used by Olsen et al. (2010) to assess the relative performance of different satellite
constellation concepts for geomagnetic field modelling.

The model covariance matrix, in the absence of regularisation (α2 = 0), is given by

Cm =
(
GTWdG

)−1

. (8)

To construct this matrix no actual data are used; the matrix is entirely calculated from the positions of the data points, the assigned data
uncertainties, and the data type (field or gradient data). However, in our case Cm depends indirectly on the data through the robust data
weights w which depend on the data residuals e, i.e. on the differences between the observations and model predictions.
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Figure 4. Variance of the spherical harmonic expansion coefficients gmn , h
m
n for various input data sets. Blue corresponds to well resolved coefficients (i.e.

low variance) while yellow corresponds to poorly resolved coefficients (i.e. large variance).

Eq. (8) describes the covariances of the estimated point source amplitudes qk. For comparing models determined from different data
sets it is more convenient to look at the covariances of the spherical harmonic expansion coefficients g = {gmn , hmn }. Using the inverse of D
from eq. (7), the covariances of gmn , hmn are

Cg,h =
(

(D−1)
T
GTWdGD−1

)−1

, (9)

and the diagonal elements of Cg,h are the variances σ2
g,h of the coefficients gmn , hmn .

Figure 4 shows the dependence of σ2
g,h on spherical harmonic degree n and order m (showing only up to n = 140), with m ≥ 0

referring to the coefficients gmn and m < 0 referring to hmn . Since the absolute values of σ2
g,h rely on the assumption of uncorrelated data

uncertainties – a condition that might not be fulfilled – we present here only the relative value of σ2
g,h on an arbitrary scale by dividing with

a reference variance (arbitrarily chosen to be σ2
0 = 1 nT2) which, however, is the same for all the cases presented in the figure. Blue colours

show low variances while yellow represent larger variances.
Figure 4a shows the variances σ2

g,h for a model that is based on CHAMP scalar and vector field (but no gradient) data, while Fig. 4b
presents variances for a model that uses CHAMP scalar and vector NS gradient (but no field) data. NS gradient data improve the determination
in particular of spherical harmonic terms of degree n larger than approximately 100 as can be seen from the reduced variance of those
coefficients. NS gradient data are, however, not able to improve high-degree near-sectoral coefficients (i.e. coefficients with order m ≈ n).

The variances shown in Fig. 4b are representative of what can be achieved with single satellite NS gradient data taken at altitudes of
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Figure 5. Left: Variance ratio for models estimated from combined CHAMP + Swarm data sets, compared to the CHAMP-only model of Figure 4b). Green
corresponds to potential model improvement (i.e. reduction of variance), while black corresponds to no improvement.

350 km and below. The corresponding results for the Swarm satellite mission when both lower spacecraft are treated as single satellites (i.e.
no use of EW gradient data) is shown in Fig. 4d; the variances are considerably larger, in particular for higher degrees n, due to the higher
altitude of the Swarm satellites.

However, taking advantage of the unique constellation aspect of Swarm, we estimated coefficient variances from a data set that only
consists of Swarm EW gradient data (i.e. no use of NS gradient data). The results, presented in Fig. 4c, are similar as those obtained with
Swarm NS gradient data (Fig. 4d) and CHAMP field data (Fig. 4a).

From these results it is obvious that the low-altitude CHAMP NS gradient data set is the single data set which provides most informa-
tion on the lithospheric field. We therefore will use the CHAMP gradient-only model of Figure 4b as reference in an investigation of the
incremental value of adding other data sets in addition to the CHAMP NS gradient data.

Figure 5 shows the ratio of the coefficient variances of different data set combinations, divided by the variances of the CHAMP gradient-
only solution (which is now taken as the reference model). A value of that ratio close to 1 (presented by black) indicates no improvement,
whereas values below 1 (green and blue) represent a potential model improvement.

Results for a model that is based on CHAMP and Swarm NS gradient data (but neither field nor Swarm EW gradient data) are shown in
Figure 5a: the variance ratio is close to 1 for most of the coefficients, indicating only marginal improvement of the combined model compared
to the CHAMP-only reference solution (panel 4b). Exceptions are low-degree coefficients (n <≈ 40) and the near-zonal terms (i.e. terms
with order m ≈ 0); they are obviously improved for all degrees n. The reason for this could be the slightly higher orbital inclination of the
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lower Swarm pair (87.4◦) compared to CHAMP (87.2◦), thereby reducing the “polar gap” (which is the region around the geographic poles
that is left unsampled).

Inclusion of CHAMP field data (the additional data set described in section 2.2 with data uncertainties assigned similar to the approach
used for the gradient data) together with the CHAMP NS gradient data results in an improvement of the near-sectoral terms (m ≈ n), as can
be seen from Figure 5b.

However, a similar variance reduction can also be achieved when including Swarm EW gradient data instead of the CHAMP field data,
as demonstrated in Fig. 5c. (Note that the actual model improvement might be even larger than the variance reduction shown in this figure
since gradient data are less affected by remaining external field contamination.)

We finally determined the model improvement when using Swarm NS and EW gradient data together with the CHAMP NS gradient
data. As expected, this combines the model improvements of Figures 5a and c, resulting in variance ratios shown in Fig. 5d.

We conclude that combining CHAMP NS and Swarm NS and EW gradient data leads to a significant reduction of variances by up to
50% (corresponding to a reduction of the variance ratio from 1 to 0.5) compared to a CHAMP-only model, clearly demonstrating that Swarm
data can improve lithospheric field models, despite their higher altitude, and without the need to include magnetic field data.

5 DISCUSSION

Maps of the vertical component Z and of the scalar anomaly F at Earth’s surface from the LCS-1 model are shown in Figure 6, synthesized
for spherical harmonic degrees n = 16 − 185. The maps show the expected anomaly features throughout the world: the cratonic regions
of the continents (Archeans and Proterozoic domains) have stronger anomalies than the accreted Paleozoic and younger crusts and the long
wavelength features associated with and sub-parallel to the oceanic magnetic reversal stripes are seen consistently on or near widely separated
isochrones, especially near the edges of the Cretaceous quiet zones where the width of the magnetic contrast zones is large. For the first time
we can observe from maps prepared from the satellite data alone the EW oceanic features associated with the reversal stripes formed in the
last 50 Ma of separation history of Australia from Antarctica. In previous field models, these features have been overwhelmed presumably
by along-track noise lending them more NS trending appearance which is not expected from the alignment of stripes and their offsets across
transform faults in this region.

A number of other features on the ocean crust are seen for the first time. For example, there are NS trending lows in the vertical
component map that appear to be associated with the NS trending 85◦ E ridge in the Bay of Bengal. Near the magnetic equator, NS features
do not have distinct anomaly signatures in the intensity anomaly and this characteristic of the 85◦ E ridge has not previously been recognized
as the near surface magnetic anomaly data are intensity field and the Z-component in MF7 does not show a distinct correlation with the ridge.
A second new feature is a linear doublet of NS trending anomalies along the southern segment of the 90◦ E ridge (between 15◦ S and 30◦ S
latitudes where it lies just west of the 90◦ E longitude). Only the anomaly features associated with the Broken Ridge in the southernmost part
of this NS feature were known prior to this study as there are only a few marine profiles in the southern segment of the 90◦ E ridge.

Another interesting feature is the NS trending anomaly south of the Walvis Ridge within the Cretaceous quiet zone (between 30◦ S and
45◦ S latitudes and along approx. 5◦ E longitude) and not parallel to the nearby edge of the Cretaceous quiet zone. Available marine magnetic
grids (e.g., EMAG3 and EMAG2 V3 models) show data in the region but in the tracks available to us in the region there are many gaps as well.
Since the LCS-1 model has more uniform data coverage in the region, we believe this feature is real and could be associated with coalescence
of magnetic anomalies (Taylor & Ravat 1995) leading to linear trends (Ravat 2011) from processes such as later magmatic intrusions,
variable magma supply, variable Fe content, variable magnetic thickness, geomagnetic excursions and variability of the paleomagnetic field
(Granot et al. 2012). The EMM2015 lithospheric field model developed by Maus and co-workers (www.ngdc.noaa.gov/geomag/EMM/) and
the WDMAM2 model (Lesur et al. 2016), truncated to degree 185, also have features cross-cutting the central South Atlantic isochrones.
This region also has very few marine magnetic tracks similar to the southern oceans regions away from continental margins. In LCS-1 these
cross-cutting features are significantly subdued.

On the continents, where there are aeromagnetic data in EMM2015 and WDMAM2, the features in LCS-1 (in both Z and F , Figure 6)
are similar to those models truncated at degree 185. The importance of LCS-1 is apparent where the aeromagnetic or near-surface data do
not exist or are sparse. The detail for the Bangui anomaly region and several regions in Africa has improved substantially in comparison to
the truncated EMM2015 or WDMAM2 models. The boundaries of features of Bangui are better defined in LCS-1 Z-component anomalies.
Similarly, the Kenya and Ethiopian domes are places where NS features are expected because of the geology of the East African Rift but
could not be observed in previous maps. In the LCS-1 Z-component map (Figure 6 top), we now observe a distinct alignment of positive
features skirting east of Lake Victoria and also an alignment of negative features on the western flank of the Ethiopian dome. Not all sources
of the lows can be related to the rift or the flood basalts and these need to be investigated further in detail.

The lithospheric power is higher in continental regions compared to oceanic regions, as expected due to the generally thicker continen-
tal/cratonic crust. The global average of B2

r at Earth’s surface is 48.5 nT2 (for spherical harmonic degrees n = 16 − 185), the power in
continental regions is 66.1 nT2 while that of the oceanic regions is only 39.4 nT2. Use of L1 model regularisation (i.e. minimizing the global
average of |Br| at the surface) helps in achieving this difference between continents and oceans; a L2-regularised model (i.e. constructed to
minimise the global average of B2

r ) that has the same global power (48.5 nT2) as the L1 model has a smaller continental power (63.6 nT2)
and higher oceanic power (40.1 nT2) than the L1-regularised model. As a result, the L2-regularised model shows more spurious features
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Figure 6. Maps of the lithospheric field vertical component Z (top) and of scalar anomaly F (bottom) at Earth’s surface (ellipsoid) from the LCS-1 model, for
spherical harmonic degrees n = 16− 185. Red curves represent QD-latitudes of ±55◦, resp. 0◦, while green curves show isochrones
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in oceanic regions than the L1-regularised model with the same global power; avoiding spurious oceanic features using L2-regularization
requires heavier damping which results in reduced global power. This clearly illustrates an advantage of L1-regularisation for deriving global
models that include both high-amplitude (e.g. continental) and low-amplitude (e.g. oceanic) regions.

Global Lowes-Mauersberger spatial spectra for various lithospheric field models are compared in the top panel of Figure 7. There is
excellent agreement between the various models for spherical harmonic degrees up to, say, n = 90 (the power, a quadratic measure, of our
L1-regularised model LCS-1 is slightly less than that of the L2-regularised models MF7, CHAOS-6 and EMM2015). For degrees n = 90 to
130 the power of LCS-1 and MF7 is at a similar level while that of CHAOS-6 is slightly higher (probably indicating limitations of CHAOS-6
at higher degrees). The decrease of power for n > 130 is influenced by the regularisation. The EMM2015 model is a combination of MF7
(for n ≤ 133) and the EMAG2 V3 marine/aeromagnetic data sets (n ≥ 133), formally going up to spherical harmonic degree and order
720. The EMAG2 V3 data set is, however, not of uniform global coverage, and therefore the EMM2015 model, although formally a global
model, only contains accurate short-wavelength lithospheric field features (corresponding to degrees n > 133) in regions with sufficient
near-surface data coverage. Although EMM2015 shows the highest power of all models at n > 133 it is therefore likely that EMM2015 also
underestimates the global lithospheric power above degree 133.

The lower panel of Figure 7 shows the degree correlation ρn (see eq. 4.23 of Langel & Hinze (1998) for a definition) between LCS-1
and various other field models. The degree correlation is above 0.9 for all degrees n ≤ 100 and above 0.8 for all degrees n ≤ 130. No
other satellite-derived global lithospheric models exist for degrees above n = 133 and therefore an assessment of the high-degree part of our
model is not straightforward. Despite the limitations of EMM2015 in providing a global representation of the lithospheric field for degrees
n > 133, the degree correlation between LCS-1 and EMM205 for n = 134 to 140 (where EMM2015 is entirely based on near-surface data
where available) is above 0.7, which is encouraging.

Next we assess our lithospheric field model using independent near-surface magnetic data. Australia is the only continent with a near
perfect regional aeromagnetic coverage. This coverage was possible due to the backbone of baseline Australia-wide Airborne Geophysical
Surveys (AWAGS and AWAGS2 flight lines supplemented with a network of magnetic base stations, Milligan et al. (2010)); thus, this
region has the best long wavelength control for assessing different global models. We compare the wavelength content of LCS-1, MF7, and
EMM2015 models with respect to this Australian data set. Figure 8 shows a spatial comparison of magnetic field intensity anomalies in the
Australian aeromagnetic anomaly grid (filtered with a lowpass wavelength cutoff of 225 km) and the LCS-1 and MF7 models. It is clear that
most of the anomaly features in the 225 km filtered data are observable in the LCS-1 field intensity anomalies with nearly the same resolution
(except in south-central Australia). MF7 is limited by its highest spherical harmonic degree and order of 133.

The visual comparison in Figure 8 is corroborated with the estimates of coherency (which is comparable to global degree correlations
shown in the bottom panel of Figure 7) in the central third of Australia (Figure 9). For estimating coherency (normalized cross-spectrum,
see eq. 9.1.36 of Priestley 1981) between two maps we use two identical data windows and 2D multitapering (Hanssen 1997) to improve
statistical properties of the low wavenumbers of the spectra of the signals (because there are only a few estimates of Fourier amplitudes
available in the low wavenumbers), and compute annular averages over a band of wavenumbers.

If certain wavelengths are not present in the data sets being compared or the signal at those wavelengths is corrupted or phase-shifted,
coherency is reduced. Since the Australian magnetic data are of very high fidelity and full spectrum, based on the degree/order of the spherical
harmonic expansion of EMM2015, LCS-1, and MF7 models, we expect their coherency with the Australian aeromagnetic data to degrade
around wavelengths of 55 km, 215 km, and 300 km, respectively. This is seen to occur at the coherency value of 0.5 in each case and is
reasonable. EMM2015 reflects the fact that the model uses the Australian aeromagnetic database for wavelengths less than 300 km. LCS-
1 has clearly benefited in terms of resolution by using gradients of the fields from CHAMP and Swarm satellites. LCS-1 also has better
coherence at the longest wavelengths (900− 1500 km) in the central Australian spectral window. Similar analysis has been performed over
other Australian regions with similar results.

The coherency analysis has also been performed over the U.S. where the U.S. NURE aeromagnetic data have been processed using
the CM4 continuous core field model (Sabaka et al. 2004) instead of IGRF/DGRF and merged with the North American magnetic anomaly
database. The continental U.S. part of the NURE-NAMAM2008 database is full spectrum to the extent possible (Ravat et al. 2009) without
flying new back-bone aeromagnetic surveys as done in Australia. This analysis suggests that the wavelength content of the LCS-1 model
is limited to 250 km while MF7 performs similarly to the central Australian case. EMM2015 on the other hand degrades much more
rapidly in North America compared to Australia, reaching coherency of about 0.5 at 85 km wavelength. This is because EMM2015 used
Decade of North American Geology (DNAG) magnetic database in the U.S. and not the intermediate and long-wavelength corrected NURE-
NAMAM2008 database (Ravat et al. 2009). Since no other regional compilations in the world has proven high quality intermediate- and
long-wavelength coverage, based on the Australian and the U.S. comparisons, we conclude that the LCS-1 model will be able to improve
satellite based magnetic anomaly definition globally at wavelengths > 250 km (i.e. for degrees n < 160).

Where can LCS-1 help immediately in magnetic interpretations? Clearly, that would be in regions of the world not covered presently with
near-surface magnetic data. This covers large parts of the African continent, regions in South America where data are not publicly available
and parts of the southern oceans without adequate magnetic ship-tracks. In Figure 10, we show 3-D surface plots of the field intensity magnetic
anomaly over one of the highest amplitude magnetic features on the Earth, the Bangui anomaly in central Africa. The associated high-low-
high pattern of anomalies has been interpreted by different researchers since the days of the POGO and Magsat satellites: as magnetic contrast
between a large crustal-scale intrusive body situated under the Congo basin and the surrounding central African shields (Regan et al. 1975);
as strongly magnetized thick iron-formation as well as differences in magnetic contrasts between the basins and surrounding shields (Ravat
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1989; Ravat et al. 1992); and as a large circular region magnetized by asteroid impact (Girdler et al. 1989, 1992; Ravat et al. 2002). The
only known near-surface magnetic data in the region are sparse ground data which show central lobes of −1000 to −1400 nT of 0.5◦ − 1◦

half wavelength and northern and southern side lobes of +400 to > 600 nT of 0.25◦ − 1◦ half wavelength (J. Vassal, unpublished data,
1978, in Regan et al. 1975) and hence the high resolution satellite anomaly models are extremely valuable in the assessment of the origin of
geologic sources and economic resources of the region. The LCS-1 field intensity anomaly (three narrow and 300 to 400 nT positive peaks
and a couple of narrow 300 to 500 nT negative troughs, Figure 10b) shows significant improvement in spatial resolution over the MF7 field
(a couple of broader and lower amplitude positive and negative peaks each, Figure 10a). A similar improvement is also seen in the features
of west African cratons and the intervening Taoudeni basin in the NW section of the surface plots (for geology and preliminary magnetic
crustal models, see Ravat (1989), and references therein).

6 SUMMARY AND CONCLUSIONS

We have used four years of CHAMP satellite and three years of Swarm satellite constellation magnetic “gradients” observations (approxi-
mated by finite differences of magnetic field observations) to derive a global model of Earth’s lithospheric field. The model is regularised by
minimizing the L1-norm of the radial magnetic field, |Br|, averaged over Earth’s surface.

The resulting model shows very good agreement with other satellite-derived lithospheric field models (degree correlation above 0.8 for
all degrees n ≤ 133). Comparison with independent near-surface aeromagnetic data from Australia yields good agreement at horizontal
wavelengths down to 250 km (corresponding to spherical harmonic degree n = 160). Crucial for achieving this result is the East-West
“gradient” information that is provided by the unique Swarm constellation, despite of the presently rather high altitude of the Swarm lower
satellites (of about 450 km) compared to the altitude of CHAMP (below 350 km) during the last four years of the mission. This is very
encouraging for future lithospheric field modelling: including forthcoming Swarm data taken at lower altitude will certainly further increase
the spatial resolution of satellite-derived lithospheric field models.
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