GEOLOGICAL SURVEY OF NORWAY (NGU)

FIXED WING STAVANGER-TRONDHEIM AEROMAGNETIC SURVEY 2013 (STAS-13)

FINAL SURVEY REPORT

Produced by:

Montréal, Québec, Canada

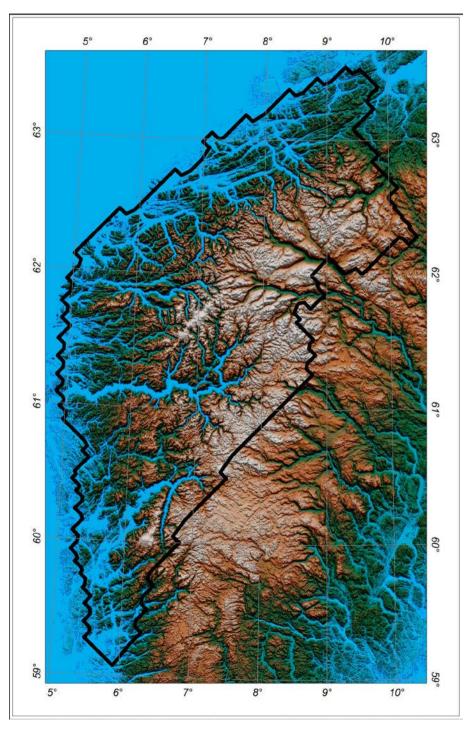
July 17th, 2014

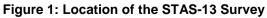
Table of Contents

1.	Introduction				
2.		y Specifications			
	2.1.	Survey Area			
	2.2.	Flight Specifications			
		Line Spacing			
		Altitude			
	2.3.	Technical Specifications			
		Flight Plan			
		Diurnal Activity			
~		Airborne Magnetometer Noise			
3.		y Equipment and Personnel			
	3.1.	Aircraft			
	3.2.	Airborne and Ground Systems			
		Magnetometer			
		Data Acquisition System and Compensator			
		Navigation			
		Radar Altimeter			
		Pressure and Temperature Sensor			
	3.2.6.	Magnetic Base Station	7		
		Field Data Quality Control System	8		
	3.3.	Personnel			
4.		Dperations			
	4.1.	Base of Operations			
	4.2.	Schedule			
	4.3.	Operational Issues			
_	4.4.	Tests and Calibrations			
5.		Processing			
	5.1.	Map Projection			
	5.2.	Field Processing and Quality Control			
	5.3.	Positioning Data			
	5.4.	Altimetry Data and Digital Terrain Model			
	5.5.	Ground-Based Magnetic Data	.14		
	5.6.	Airborne Magnetic Data	.15		
	5.6.1.	Compensation and 1 st Phase of Edition against Transient Cultural Signal	.15		
		Partial IGRF Correction from Flight to Drape Surfaces			
		Diurnal Correction			
		1 st Phase of Intersection Levelling			
		Final Line Selection			
	5.6.6.	Taylor Correction from Flight to Drape Surfaces	.18		
	5.6.7.	2 nd Phase of Edition against TMF Noise	.18		
		2 nd Phase of Intersection Levelling			
		IGRF Residual of TMF			
		.Gridded Data			
6.		Deliverables			
	6.1.	Digital Data			
_	6.2.	Other Products			
7.	Concl	usion	.22		
Appe	Appendix A – STAS-13 Survey Area Coordinates				
		– Calibration Tests Results			
	B.1.	Figure of Merit (FOM)			
	B.2.	Altimeter Calibration			
Appe		 Final Processed Database Field Description 			
		– Daily Operational Report			

1. Introduction

This report describes in detail the field operations, as well as the acquisition, verification, and processing steps required to obtain high quality final data through an airborne magnetic survey flown by **EON Geosciences Inc. (EON)** for the **Geological Survey of Norway (NGU)** on the mainland of western Norway, as part of their Stavanger-Trondheim Aeromagnetic Survey 2013 (STAS-13) project.


The STAS-13 survey was flown from Bergen Airport. Including initial calibrations and data acquisition, the airborne survey was realized between September 22nd to December 8th 2013 and January 28th to April 24th 2014. A total of 75,115 line kilometers were necessary to cover the STAS-13 survey area.



2. <u>Survey Specifications</u>

2.1. Survey Area

The survey area is located in western Norway. Its boundary is outlined in Figure 1. The boundaries for the survey area are defined by the coordinates found in Appendix A.

In terms of altitude, terrain in the survey area may be described as severe. Specifically, the topography ranges from 0 meter (sea level) to approximately 2,395 meters, and drops rapidly over the fjords.

2.2. Flight Specifications

2.2.1. Line Spacing

	Traverse Lines	Tie Lines	Total
Spacing	1,000 m	10,000 m	
Heading	N 135º E	N 45º E	
Line-km	67,911 km	7,204 km	75,115 km

2.2.2. Altitude

The survey was flown at a nominal terrain clearance of 200 meters.

In order to ensure that traverse and tie lines were flown at equal altitude at intersections, and in turn ensure a higher quality of levelled data, a drape surface contouring the topography was used for navigation. This drape surface was computed using the topography supplied by **NGU** and a slope of 5%.

2.3. Technical Specifications

Throughout the survey, the following technical specifications, as defined in the contract, were considered for data acceptance.

2.3.1. Flight Plan

In the absence of required avoidances for safety or regulatory reasons, the following items were considered for potential re-flight, according to their impact on end-product quality:

- Horizontal deviation with respect to the planned flight path causing line separations in excess of ±50% of the nominal spacing over a distance greater than 3,000 meters,
- Intervals displaying sustained deviation from the drape surface in excess of ±30m (ties) or ±50m (traverses).

2.3.2. Diurnal Activity

Tolerances for diurnal activity were:

• Intervals where main base station data displayed sustained deviations greater than ±30nT with respect to a 10-minute long-chord were considered as potential re-flights.

2.3.3. Airborne Magnetometer Noise

Tolerances for airborne total magnetic field (TMF) noise were:

- Intervals where airborne TMF data displayed sustained noise greater than an envelope of ±0.1nT, as determined by a 4th difference filter, were considered as potential re-flights,
- Standard figure of merit (FOM): better than 1.5 nT.

3. Survey Equipment and Personnel

3.1. Aircraft

EON provided a Piper Cheyenne II PA-31T aircraft (registration C-GFON) for this project (see Figure 2 below). The aircraft is equipped with a tail stinger suitable for one magnetometer.

The technical specifications are:

Туре:	Piper Cheyenne II PA-31T
Registration:	C-GFON
Range (km):	2,000
Survey speed (km/h):	288
Survey speed (m/s):	80
Rate of climb (%):	15
Aviation Fuel:	Jet-A
Fuel consumption (L/hr):	250

Figure 2: C-GFON – Survey Aircraft

3.2. Airborne and Ground Systems

EON used the latest state-of-the-art technology instruments as described in the following sections.

3.2.1. Magnetometer

A Geometrics G822-A cesium-vapour split-beam sensor was used. The specifications are as follows:

Manufacturer:	Geometrics
Type and Model:	G822-A
Ambient Range (nT):	20,000 - 100,000
Sensitivity (nT):	± 0.0006
Absolute Accuracy (nT):	± 3
Sampling Interval (sec):	0.1
Heading Error (nT):	± 0.025

3.2.2. Data Acquisition System and Compensator

EON used RMS Instruments' Data Acquisition & Adaptive Aeromagnetic Real-Time Compensation (DAARC500) system. This data acquisition system integrates aeromagnetic real-time compensation with recording from analog and serial data sources. All data acquisition is synchronized in real-time to GPS time via a 1 second pulse. Since the GPS position and UTC time are related to the GPS pulse, a correlation precise to ±0.015 sec is maintained.

DAARC500 compensation uses a three-axis fluxgate magnetometer to monitor the aircraft's position and motion with respect to the ambient magnetic field. Resulting signals are compensated according to a calibration based on a set of standard manoeuvres of rolls, pitches, and yaws made along each survey heading. Aeromagnetic data are sampled at a rate of 10Hz.

Analog and serial inputs are sampled at the same rate as magnetometer data, or at sub-multiples of it. These data are recorded in the main data file as a sequence of blocks including system and GPS times, as well as PPS-correlation event tags, in order to allow an easy quality control of synchronization.

This system provides a high-resolution real-time graphical output to a built-in colour display that allows real-time monitoring of data acquisition by the operator.

3.2.3. Navigation

The following table describes the airborne differential GPS system that provided both real-time navigation and flight-path recovery:

GPS Manufacturer:	NovAtel
Model:	ProPak-V3
Differential System:	Omnistar
Frequencies:	2
Accuracy (m):	± 1
Number of Channels:	12
Navigation System:	Ag-Nav LiNav
Pilot Display:	LCD with up/down and left/right indicators
Sampling Interval (sec):	1

The main features of the positioning system are:

- 1) Real-time graphical and numerical display of flight path with survey-area and grid-line overlay using real-time differentially corrected GPS data,
- 2) Vertical navigation with respect to a drape surface,
- 3) Distance-from-line and distance-to-go indicators,
- 4) Operation in survey-grid or way-point navigation mode,
- 5) Recording of raw range-data for all satellites.

3.2.4. Radar Altimeter

The following table describes the radar altimeter that was installed in the aircraft:

Manufacturer:	Rockwell Collins
Model:	ALT-55B
Range (ft):	0 to 2,500 ft
Accuracy:	± 2 ft (0-100 ft)
	± 2 % (100-2,500 ft)
Sampling Interval (sec):	0.1

3.2.5. Pressure and Temperature Sensor

The following table describes the pressure and temperature sensors that were installed in the aircraft:

Manufacturer:	Vaisala	Vaisala
Model:	PTB110	HMP155
Measured parameter	Real atmospheric pressure	Ambient air temperature
Accuracy:	± 0.3 hPa (mbar)	± 0.17 °C
Sampling Interval (sec):	0.1	0.1

3.2.6. Magnetic Base Station

The following table describes the base station magnetometers that were installed at two different locations in Bergen, baseA and baseB. Figure 3 shows the baseA installation.

Manufacturer:	GEM Systems
Туре:	Overhauser
Model:	GSM-19
Dynamic Range (nT):	10,000 – 120,000
Sensitivity (nT):	< 0.015
Absolute Accuracy (nT):	± 0.1
Sampling Interval (sec):	1
Noise level	< 0.1 nT

Figure 3: Magnetic Base Station A Installation

3.2.7. Field Data Quality Control System

The following list describes the main components of the in-field data verification system:

Computers: Printer: Software:

Data transmission:

PC laptops HP Photosmart C3180 Geosoft Oasis montaj, Waypoint GrafNav FTP site

Any calibrations or determinations that were carried out during the field operation were also processed on this system together with the daily quality control tests and checks.

3.3. Personnel

The following table lists the personnel of **EON** that were involved during this project:

Field Operation				
Project Manager	Khaled Moussaoui			
Field Manager	Rick Bailey			
Operation Geophysicist	Soroor Mohammadi			
Quality Control and Data Processing	Maxime Salman			
	Alain Charron			
Dilota / Co. pilota / Equipment Operatora	Raymond Fromm			
Pilots / Co-pilots / Equipment Operators	André-Philippe Camitsis			
	François-Xavier Pinte			
Aircraft Maintenance Engineer	Alain Guillemette			
Office Processing				
Final Data Processing	Gérard Tessier			
Survey Pepert	Khaled Moussaoui			
Survey Report	Gérard Tessier			
Final Products	Khaled Moussaoui			
	Gérard Tessier			

4. Field Operations

4.1. Base of Operations

The survey was conducted from Bergen, Norway. The Bergen Airport was used as a base of operation. During the last month of the survey, the aircraft and crew temporarily relocated to different airports, namely Ålesund, Florø, and Førde, and also used various airports for refueling, namely Ålesund, Florø, Førde, Kristiansund, Molde, Sogndal, and Trondheim, thus minimizing ferry distance and maximizing production.

4.2. Schedule

The table below displays the schedule of survey activities including tests, calibrations, and demobilization. Data acquisition was completed on April 24th, 2014, for a total accepted production of 75,115 line-km.

Schedule – STAS-13 Survey – Norway				
Aircraft Date		Description		
	September 13 th , 2013	C-GFON begins ferry flight from Montreal.		
	September 19 th , 2013	C-GFON arrives in Bergen.		
	September 20 th , 2013	Base stations installed in Bergen.		
	September 22 nd , 2013	Successful FOM test, flown offshore, western Norway.		
	September 23 rd , 2013	Production flying begins.		
	October 19 th , 2013	GPS base station destroyed by a herd of sheep.		
Piper Cheyenne II	October 21 st , 2013	baseA relocated away from sheep.		
PA-31T	October 24 th , 2013	baseA relocated away from sheep.		
(C-GFON)	December 8 th , 2013	Crew demobilized from Norway. Project halted due to		
		poor weather conditions and shortening daylight.		
	January 28 th , 2014	Crew re-mobilized to Norway.		
	January 29 th , 2014 Base stations re-installed in Bergen.			
	January 31 st , 2014	Successful FOM test, flown offshore, western Norway.		
	February 1 st , 2014	Production flying resumes.		
	April 24 th , 2014	Data acquisition completed.		
	April 26 th , 2014	Demobilization begins.		

4.3. Operational Issues

Production was operationally efficient from late September to early November 2013 and from late March to late April 2014, when two (2) sorties per day could often be performed. Late fall and winter were characterized by long idle periods without production, due to weather conditions. The major factors affecting production were:

- Weather, including low ceilings, fog, rain, and high winds, most notably toward the end of fall and during winter, and amounting to 109 down days (61% of total survey duration).
- Weather was also the sole cause of re-flights (2.4% of flown km), all due to deviation from drape and/or flight path, and of the breaking of close to 190 survey lines in multiple overlapping segments (3.9% of flown km).
- National security authorities designated as no-fly zones several segments of the original survey area, with the removal of 144 km and the following coverage disruptions:
 - 9 shortened traverses: 1390, 1710, 1750, 1910, 2030, 3300, 4410, 4650, 4990,
 - 10 traverses broken in two (2) sections: 2000, 2010, 2020, 2430, 3190, 3200,
 - 3210, 3220, 4500, 5280,
 - 4 displaced ties: 6020, 6080, 6150, 6160.
- Difficulty in finding an adequate location for the magnetic base stations, as a background high-frequency noise was observed at all attempted sites in the general Bergen area.
- Several base stations location changes due to the destruction of the 1st installation by a herd of sheep and the relocation of the base stations at re-mobilization.

These issues are identified in the daily operational report found in Appendix D.

4.4. Tests and Calibrations

Prior to production flights, the following tests and calibrations were performed by the Piper Cheyenne II PA-31T aircraft (C-GFON) in the Montreal area and in Norway:

- Altimeter calibration
- Figure of Merit (FOM)

Detailed compilations for those tests are presented in Appendix B.

5. Data Processing

The key objective of this survey was the acquisition and processing of airborne total field magnetic (TMF) data. Preliminary field quality control and final data processing were performed using Geosoft Oasis montaj. In the following text, final database *channel names* are printed in *italics*, and a description of these channels may be found in Appendix C.

5.1. Map Projection

The following mapping projection was used throughout the project for navigation, data processing, and mapping purposes:

- Projection: UTM Zone 32N
- Type: Transverse Mercator
- Datum: WGS-84
- Reference ellipsoid: WGS-84
- Local datum transform: WGS-84 World
- Length unit: Meters

5.2. Field Processing and Quality Control

The field crew provided the field processor with backups of ground-based and airborne data files, either after each flight or on a daily basis, allowing for immediate quality control (QC) and initial data processing as described in the following. Field processing was entirely reviewed by the senior processor, either on a daily basis (flights 058-081 and 097-116), or at a later date (flights 001-054, 082-096, and 117-119).

Acquired data files were first merged into Oasis data files (GDB) in full flight format, on which the following basic QC and processing operations were performed on a daily basis:

- inspection of the flight path for completeness of coverage and compliance to line-spacing and altitude specifications,
- trimming of the *line* channel in order to provide four (4) seconds of extension outside of the survey boundary and preserve a maximal length of usable overlapping data, in-spec or not, useful for the determination and assessment of final processing parameters,
- statistical analysis and inspection, both in profile and grids, of key channels in order to ascertain compliance to diurnal and noise specifications (as described in Section 2.3), as well as to detect eventual operational issues requiring immediate action, such as missing data or hardware problems,
- logging of lines or segments of line possibly requiring re-flight, evaluation of their impact on general end-product quality via periodic preliminary processing of available data.

Full flight GDBs were separated into survey lines and gradually concatenated into the field line database, for a total of 740 lines at the end of acquisition. This updated line GDB allowed for more advanced QC processing (such as effectiveness of lag and diurnal corrections), optimization of flight planning, and periodic deliveries of preliminary field data to **NGU**.

5.3. Positioning Data

The NovAtel ProPak-V3 GPS unit transmitted real-time RT-DGPS data to the RMS Instruments DAARC500 acquisition system for data recording and synchronization, as well as to the Ag-Nav Linav navigation system for line and drape navigation. The ProPak-V3 used Omnistar broadcast data for real-time differential corrections. The synchronization of GPS data with respect to geophysical data consists in the proper alignment of serial RT-DGPS data with respect to a PPS pulse transmitted by

the ProPak-V3 specifying the corresponding RMS system time of these data at a precision of 0.015 sec. Synchronization was verified through an analysis of the differences between available clocks (RMS system, Ag-Nav, and ProPak-V3) and of the lag between GPS, barometric, and radar altitudes, in order to detect and correct possible improper alignment caused by occasional spurious serial transmission delays. Gridding and intersection levelling of TMF data provided a final validation of synchronization and instrumental lags.

Recorded airborne raw GPS data were used for DGPS post-processing, using the NovAtel Waypoint software. Waypoint PP-DGPS computations were made either in differential mode, using raw data of the GPS base station, or in precise point positioning (PPP) mode, using CSRS precise clocks and ephemeris data available at the Natural Resource Canada web site. Base station positioning was performed in PPP mode. Mean sea level (MSL) elevations were referenced to the EGM-96-World ellipsoidal-to-orthometric model. Daily and final PP-DGPS quality control, based on the analysis of velocity profiles and on comparison of PP-DGPS, RT-DGPS, and barometric altitudes, ascertained that RT-DGPS precision remained suitable for navigation (< 5 m) and that Waypoint post-processing improved positioning precision to the order of 1m.

PPP-DGPS final data were used to finalize QC of flight path and drape following (channel *drape*) during field operations, to complete radar QC and edits through computation of a digital terrain model (DTM), and to compute altitude differences at intersections, allowing for a precise flagging of line segments displaying excessive deviations and requiring re-flight.

5.4. Altimetry Data and Digital Terrain Model

It is good to first note that the height difference of the GPS antenna with respect to the instrumental platform, which was +2.5 m for C-GFON, was taken into account for all computations involving GPS, barometric, radar, and digital terrain model (DTM) elevations. As an example, the formula used to determine the final DTM elevation is (DTMf = z - 2.5 - raltf).

Raw radar altitude (*raltl*) is first obtained by a linear transformation from raw readings, using parameters determined via the acquisition of an altimeter calibration flight (refer to Section 4.4). Edition of radar data (*raltlc*) is performed via LP filtering against discrete spikes and noise, and by levelling of the resulting DTM elevation, where DTM errors are considered as radar corrections.

The method used for DTM levelling was dictated by the mostly very rugged terrain (0-2395m, prevalence of steep-sided fjords) and its impact on acquired radar data. <u>Saturation</u> of the radar unit occurred over 26.7% of the area where altitudes above ground level (AGL) were in excess of its 730m maximal range. Excessively spiky data were observed over an additional 9.7% of the area above poor reflectors such as cliff edges, for a total of 36.4% of unavailable or unusable data, which then require replacement with data derived from the published DTM supplied by **NGU** (*topoSRTM, raltSRTM*) in order to obtain seamless final radar and DTM channels (*raltlf, DTMf*). <u>Water surfaces</u> were observed over 7.8% of the area at often marginally high altitudes, causing drifty level-jumps of varying amplitude due to reflectance discontinuity at shores and increasing impact of platform-swing with higher altitudes. Noisier data were observed over 8.0% of the area, in a 4-10 sec <u>transition</u> area surrounding saturated and over-water sections, mostly composed of poorly-reflecting very steep terrain overflow at marginally high altitude. Finally, radar data of good quality were observed over the remaining <u>over-land</u> 47.8% of the area, acquired at lower AGL altitudes and over smoother terrain, with mostly small long-wavelength differences with respect to the AGL altitude of the published DTM.

A low-pass modelization of the difference between acquired and published topography was therefore selected as the most appropriate DTM levelling method, which would result in a proper correlation with the *topoSRTM* data to be substituted in saturated areas. It was then necessary to proceed with a thorough verification of the 80x80m *topoSRTM* grid, which revealed artefacts detrimental to DTM modelization and requiring edition, as follows:

• a series of five 200m wide trenches between (400000E,6750000N) and (400000E,6800000N), a single 200m wide trench between (374500E,6838000N) and

(374500E,6842500N), removed by nulling grid cells and subsequent interpolation via regridding,

- a 2m level-shift of sea surface in a 800x2000m area at (347100E,6689000N), reset to 0.0m,
- small level-shifts over the surface of a +53m lake at (359200E,6869500N), reset to +53m,
- reset of slightly negative grid cells to 0.0m (an artefact probably brought by **EON** re-gridding).

The *topoSRTM* channel could then be updated by sampling the edited grid. Finally, the channel *raltSRTM* was computed, which represents the AGL height difference between the radar antenna (*z*-2.5) and the edited *topoSRTM* surface, to be used in saturated areas.

The application of LP filtering used for modelization of the difference between acquired DTM and *topoSRTM* was designed according to the four acquisition situations described above, using as long a wavelength as possible, as required to achieve adequate levelling while minimizing alteration of acquired radar data, as follows:

- flagging of saturated, over-water, transition, and over-land segments,
- median and LP filtering of equivalent 30-40 sec wavelength applied on over-land data,
- LP filtering of 5 sec wavelength applied on merged transition and edited over-land data,
- LP filtering of 1 sec wavelength applied on over-water data, merger with above edited data,
- application of the resulting radar drift correction on *raltl*, application of non-linear de-spiking and LP 0.6 sec noise-removal filtering, and finally nulling (dummy) in the <u>saturation</u> segments to obtain the edited radar channel *raltlc*.

It is good to stress that while the edited radar channel *raltic* was nulled for the 36.4% of saturated data, the raw channel *ralti* includes saturated readings. The final radar channel *raltif* consists in the merger of channel *raltic* and of channel *raltSRTM* in the saturated areas, resulting in a seamless AGL altitude channel. The final digital terrain model *DTMf* could then be computed (*z*-2.5-*raltif*) and put at the 1Hz sampling rate of GPS data.

As a result of the edition process, the difference between non-saturated *DTMf* and *topoSRTM* passed from +1.7m \pm 15.7m to +0.2 \pm 8.2m, while the misties of non-saturated *DTMf* at traverse/tie intersections passed from -0.7m \pm 9.8m to +0.0m \pm 6.0m, 98.4% of which being below allowed \pm 4% of AGL elevation (twice the nominal \pm 2% precision of the radar unit). These statistics are satisfactory considering the prevailing steepness of the terrain, but serve mostly to establish the general reliability **NGU**'s *raltSRTM* and *topoSRTM* channels. We therefore recommend to use these channels for interpretation purposes, rather than the *raltIf* and *DTMf* channels, the precision of which is hard to evaluate at the low resolution of the line network, that does not allow for more advanced quality control such as micro-levelling.

Raw barometric altitude (*baltl*) is computed from recorded pressure and temperature channels. Edited barometric data (*baltlc*) are obtained by application of non-linear de-spiking and LP 6.0 sec filtering. The difference between barometric and GPS altitudes could then be used to control proper synchronization of GPS, as well as the respective quality of real-time and post-processed GPS elevation data (refer to Section 5.3). Finally, the final barometric altitude *baltlf* was obtained by applying a correction based on a modelization of the difference between *baltlc* and GPS altitude *z*, using spatial LP filtering of 3000m (35 sec).

5.5. Ground-Based Magnetic Data

Two (2) base stations were installed in the Flesla area, the main baseA used for computation of the diurnal correction, and the backup baseB which was located at some distance from baseA in order to assist in the detection of transient cultural signal. Base station profiles were verified daily to ensure that no data were collected during extended of diurnal variations above specified limits, or during periods of excessive micro-pulsations.

As mentioned in Section 4.3, it proved impossible to locate a completely quiet site, as a background high-frequency noise was observed at all attempted sites in the general Bergen area, and the

occasional passage of farming vehicles was unavoidable. Also, four different baseA sites had to be used, with two location changes brought by the 2013 destruction of the 1st installation by a herd of sheep, and a third one made at the 2014 re-mobilization.

BaseA data were first edited against cultural signal, mostly confirmable by comparison with baseB data, and consisting of spikes, level-shifts, and/or drifts caused by moving objects. BaseB data had to be substituted in the few cases of missing or excessively cultured baseA data. A standard LP 6 sec filter was then applied to the de-cultured baseA channel in order to partially remove HF noise without filtering out valid diurnal or micro-pulsation signal, and thus alter long-chord QC.

Once all field data were available, baseA data were used to compute and apply a preliminary diurnal correction using respective installation averages (refer to Section 5.6.3). Inspection of the resulting *mreslcb* intersection misties revealed a series of level shifts corresponding exactly with the 3 location changes, then probably caused by a variation in cultural content from site to site. Level corrections were therefore applied from baseA to the final raw and edited channels *baseCo* and *baseC*, in order to obtain a constant average of 50920.570nT, as follows:

- flights 001-023: +00nT,
- flights 024-025: -28nT,
- flights 026-054: +21nT,
- flights 058-119: +33nT.

5.6. Airborne Magnetic Data

The processing flow of airborne total magnetic field (TMF) data was designed around the application of a Taylor correction against signals generated by deviation from the planned altitude above ground level (AGL) of the drape surface. The methodology of intersection levelling is well-designed for the removal of superimposed long-wavelength diurnal signal. It is however less efficient against the often short-wavelength signal resulting from AGL deviations, especially if the spatial resolution of the levelling network is low and if high-amplitude AGL signal is frequently generated in high-gradient area. In view of the 1000m x 10000m resolution of the present survey, and since an estimated 10-15% of intersection were altered by AGL signal, it was deemed necessary to apply a Taylor correction, which however does cause some disruptions of the processing flow since:

- its computation requires optimal vertical gradient grids, themselves requiring pre-application of culture edition, IGRF, and diurnal removal, as well as a preliminary near-final levelling,
- it is preferable to perform noise edition of TMF data after application of the Taylor correction, since higher-frequency AGL signal is often indistinguishable from, and often associated with, residual compensation noise.

5.6.1. Compensation and 1st Phase of Edition against Transient Cultural Signal

The removal of magnetic signals related to the heading and manoeuvring of the aircraft was applied by the RMS Instruments DAARC500 real-time compensator, based on a compensation solution acquired and validated during an FOM test flight (refer to Appendix B). Real-time compensation allows for in-flight quality control, as the operator may determine when turbulence level becomes detrimental to data quality and abort the acquisition when advisable. Following the application of the lag correction, uncompensated (*um3l*) and compensated (*m3l*) raw TMF profiles were monitored on a daily basis to further assess compensation effectiveness.

The edited TMF channel (*maglc*) is obtained via two distinct correction phases:

1) removal of discrete transient cultural signals (the object of this section), performed on a daily basis whenever possible, and completed prior to the computation of the Taylor correction,

2) removal of residual compensation noise from de-cultured *maglc*, to be performed after application of the Taylor correction as stated above (refer to Section 5.6.7).

Transient cultural signals originate either from the operation of the aircraft or from external sources such as radar towers, and are observable, on both uncompensated and compensated channels, as spikes, level-shifts, and/or bursts of high-frequency noise of varying length and amplitudes. Their manual removal is mostly straight-forward and consists in adjustment of constant level-shifts, minimum curvature re-interpolation over short intervals, and/or local filtering. The main difficulty resides in their detection, especially in high-gradient TMF, and requires a meticulous inspection of a battery of QC channels, including 4th difference, noise channels of 1.5 to 5.0 seconds wavelengths, as well as high-pass versions of the *um3l*, *m3l*, and preliminarily edited *maglc* channels (refer to Section 5.6.7). Sources of discrete noise included:

- radio transmissions from the aircraft, unavoidable in an inhabited and developed area comprising several airports and significant conflicting traffic, by far the most frequent transient source, and observable as negative spikes or level-shifts of amplitude ranging from 0.05 to 5.0nT,
- most other avionics operations (fuel pumping, de-icing, ON/OF switching of heaters, etc.) could mostly be performed during the turns, but occasionally occurred on-line, such as the 0.55nT square-wave pattern of flight 044, or a level-shift of 16nT on L5790,
- occasional sustained bursts of high-frequency noise, similar to the noise observed on the magnetic base stations (refer to Section 5.5), probably from an external source,
- a radar tower occasionally generating spikes and irregular level-shifts, mostly negative, of amplitude up to 3.8nT (west end of L1820-1880, flight 005).

5.6.2. Partial IGRF Correction from Flight to Drape Surfaces

The first of two (2) altitude corrections, performed in order to alleviate the impact on TMF of erratic deviations from the planned drape surface between adjacent traverses, consisted in the computation of a partial IGRF correction from flight to drape surfaces. Removal of the IGRF signal generated by deviation from drape was performed as follows:

- computation of the IGRF field on the flight surface (*z*), using the 2010 model,
- computation of the IGRF field on the drape surface (*drape*), using the 2010 model,
- computation of the final IGRF signal to remove: (flight surface IGRF- drape surface IGRF) reinterpolated (minimum curvature) at 10Hz and low-pass filtered (3 sec),
- subtraction of the IGRF signal from the preliminarily edited TMF (*mreslc* = *maglc* IGRF signal).

5.6.3. Diurnal Correction

The diurnal signal to remove from the preliminarily altitude-corrected TMF (*mreslc*) was obtained by the application of low-pass spatial filtering on the edited TMF obtained at the main base station (*baseC*, refer to Section 5.5). A filter wavelength of 20000m was selected 1) for its effectiveness at eradicating all possibly cultural *baseC* signal, 2) for its adequate optimization of intersection mistie statistics, 3) for an adequate decorrugation of diurnal-corrected TMF grids, and 4) since this length is equal to the resolution of the levelling network on traverses, meaning that any TMF signal possibly added by the correction remains removable by levelling. Removal of the diurnal signal was performed as follows:

- computation of the final diurnal signal to remove: (*baseC* average 50920.570nT) reinterpolated (minimum curvature) at 10Hz and low-pass filtered at a length of 20000m,
- subtraction of the diurnal signal from the preliminarily edited and altitude-corrected TMF (*mreslcb* = *mreslc* diurnal signal).

5.6.4. 1st Phase of Intersection Levelling

As mentioned above, levelling of the corrected TMF (*mreslcb* to *mreslvl*) was performed in two phases:

- <u>1st phase</u>: initial levelling of the preliminarily corrected TMF, aimed solely at the eradication of most residual diurnal signal, in order to obtain decorrugated and near-final grids of the vertical derivatives of TMF as a preparation for the following stages of final line selection (Section 5.6.5), Taylor altitude correction (Section 5.6.6), and the 2nd phase of TMF edition (Section 5.6.7),
- <u>2nd phase</u>: final levelling of fully corrected TMF (Section 5.6.8).

The method of iterative intersection levelling aims at the proper statistical re-distribution of TMF differences at tie-traverse intersections (misties). It was planned according to eight (8) iterative passes, with parameters designed to fit the present line spacing geometry, as described in Table 1 below. Each pass, applied first on ties, then on traverses, modelizes the updated *mreslvl* misties left by the previous correction by using LP filter models of gradually decreasing wavelengths. This ensures a progressive reduction of misties eventually resulting in the smoothest possible levelling corrections with minimal line-to-line correlation (often referred to as "tie-pull"). Results of each iterative modelization are further optimized by the proper re-selection of the misties that are actually used in computation, by removing aberrant misties that excessively influence the current model. Typically, as little as 85-90% of misties are selected at the initial passes, since several of the intersecting lines are not yet properly modelized. The selection rate gradually increases as levelling progresses to shorter wavelengths, eventually leading to a selection rate of 98% or better at the final pass.

Phase	Ties	Correction filter model	Traverses	Correction filter model	
1 st phase	Pass 1a	polynomial degree 0	Pass 1b	polynomial degree 0	
	Pass 2a	spatial 400000 m	Pass 2b	spatial 400000 m	
	Pass 3a	spatial 200000 m	Pass 3b	spatial 200000 m	
	Pass 4a	spatial 100000 m	Pass 4b	spatial 100000 m	
	Pass 5a	spatial 48000 m	Pass 5b	spatial 60000 m	
2 nd phase	Pass 6a	spatial 20000 m	Pass 6b	spatial 40000 m	
	Pass 7a	spatial 10000 m	Pass 7b	spatial 30000 m	
	Pass 8a	spatial 3000-4000 m	Pass 8b	spline interpolation	

Table 1: Parameters of Iterative Intersection Levelling of TMF

As mentioned, the present 1st levelling phase, limited to the execution of passes 1-5, aimed at the near-total removal of corrugations related to diurnal activity from grids of the vertical derivative of TMF. It was then imperative that correction models of pass 5 display a maximal amplitude and wavelength correlation with recorded diurnal activity, and, conversely, a minimal correlation with drape deviation. For this purpose, all sharper misties corresponding to larger drape deviations in higher gradient areas were systematically deselected. Corrections models were either 1) advanced up to pass 7 whenever mistie patterns were observed to have amplitude and wavelength content similar to diurnal activity, or 2) retarded down to flat polynomial models when diurnals were calm.

At the end of pass 5, 95.2% of misties were selected, and TMF grids of required quality could be obtained. The 4.8% of misties still deselected, as well as an additional 5-10% of selected misties, would require high-frequency and high-amplitude correction models unjustified by local levels of diurnal activity and correlated with drape deviation and local magnetic gradients. The next processing steps were line selection (Section 5.6.5), in order to remove part of the de-selected misties as most reflights were aimed at larger and more sustained drape deviations, and Taylor correction (Section 5.6.6) to improve most of the remaining sharp misties.

5.6.5. Final Line Selection

The previous processing steps were performed on all acquired survey lines, including re-flights and overlap of the numerous lines flown in multiple segments, amounting to a total of 740 lines and 79,977 km. The final kilometreage to be kept in the final database is determined by the proper selection among overlapping full survey lines and/or trimming of line segments so as to obtain a minimal overlap of 100-200m over an intersecting line. In order to preserve data of the best overall quality, selection and trimming criteria were, in order of priority:

- 1) minimal drape deviation and/or altitude difference at intersections,
- 2) minimal pass 5 mreslvl misties,
- 3) minimal diurnal activity,
- 4) minimal flight path deviation,
- 5) minimal level of TMF noise.

Selected line and/or line segments were exported to the final survey database, amounting to a total of 730 survey lines and 75,115 km, with 4,862 km removed (6.1% of acquired kilometers). The 1st phase of levelling was then updated to adjust to the new line content, with an improved selection of 95.8% of the misties resulting from the removal of the most detrimental altitude deviations.

5.6.6. Taylor Correction from Flight to Drape Surfaces

The Taylor expansion is used to alleviate the effect of erratic AGL altitude deviations between adjacent traverses as well as between intersecting ties and traverses. This 2nd altitude correction was implemented according to the general Geological Survey of Canada (GSC) recommendations of 1) limiting the correction distance to the deviation from the AGL altitude of the planned drape surface, rather than to the greater deviation from the nominal AGL altitude of the survey, and 2) using only the first degree term (1st vertical derivative) of the theoretical Taylor expansion as higher degree terms gets exponentially noisier and detrimental. As the Taylor correction is of strong amplitude and high frequency, its use must be justified by a significant improvement of TMF misties and a general improvement of TMF profiles (refer to Section 5.6.7).

The magnetic signal generated by deviation from the target AGL altitude of the drape surface, to remove from the IGRF-corrected TMF *mreslc* channel (Section 5.6.2) in order to obtain the fully altitude-corrected TMF *mreslct* channel, was computed as follows:

- computation of a 1st vertical derivative grid of TMF (VG1), using all available corrections (culture edition, partial IGRF removal, diurnal removal and pass 5 levelling), using traverse lines only, at a cell size of 50m, and using 10Hz versions of (*x*, *y*) channels,
- sampling of the VG1 grid into a database channel, edition based on the Oasis 1DFFT version of VG1 for the tie lines sections acquired above traverse gaps resulting from national security requirements,
- computation of a 10Hz version of drape deviation (z 2.5m drape),
- computation of the AGL signal to remove: (-DrapeDev * VG1) low-pass filtered (2 sec),
- subtraction of the AGL signal and update of TMF channels: (*mreslct* = *mreslc* AGL signal), (*mreslcb* = *mreslct* diurnal signal), (*mreslvl* = *mreslcb* + levelling correction).

The 1st phase of levelling was again updated to adjust to the effect of the Taylor correction, using the same levelling models as those used in the 1st phase (Section 5.6.4). Mistie selection was improved to 97.7%, with an additional improvement over 10% of the updated misties to amplitude and wavelength patterns more closely correlating with local levels of diurnal activity.

5.6.7. 2nd Phase of Edition against TMF Noise

This 2nd phase of TMF edition (*m3I* to *maglc*) consists in the detection and removal of the residual TMF high-frequency noise still remaining after real-time compensation, caused by acquisition in frequently turbulent and windy conditions. It is good to note that although this correction will be added

to the culture correction (Section 5.6.1) to obtain the final version of the edited TMF *maglc* channel, actual computations to determine the noise to remove were made from the Taylor corrected *mreslvl* channel, for the reasons stated in the introduction to Section 5.6.

In order to achieve adequate noise removal while avoiding distortion of the smaller geological anomalies, a combination of low-pass and high-pass filtering was used to construct five (5) TMF noise channels of wavelengths equivalent to 1.5sec, 2.0sec, 3.0sec, 4.0sec, and 5.0sec, generally unresponsive to most anomalies. In order to improve noise detection in higher gradient, high-pass versions of the uncompensated *um3l*, compensated *m3l*, culture-edited *maglc*, and Taylor-corrected *mreslvl* were also created, using the standard 12 sec wavelength of FOM test compilation. The 2.0 sec noise channel was initially removed from all preliminarily processed channels (*maglc* to *mreslvl*). Followed a meticulous evaluation of the effectiveness of the achieved noise removal over the whole TMF and QC channel series, resulting in the local substitution with the stronger 3.0-5.0 sec noise channels as allowed by local signal-to-noise ratio, or, for sections of more active TMF, use of the 1.5 sec noise channel or zero-filtering. An evaluation of the effect of the Taylor correction was also made during above profile inspection and it could be ascertained that it resulted in a general improvement and smoothening of TMF profiles.

Statistics of total TMF edition (culture and residual compensation noise removal) are well within the allowed noise envelope, especially considering the unusual amounts of cultural noise:

- 97.49% <= ±0.10nT,
- 99.03% <= ±0.20nT,
- 99.55% <= ±0.50nT.

5.6.8. 2nd Phase of Intersection Levelling

With all TMF corrections applied, most especially the Taylor correction (Section 5.6.6), the 2nd phase of intersection levelling could be finalized as planned (passes 6-8, Section 5.6.4). At pass 8, final LP spatial models used for ties were of length 3000m or 4000m, according to the level of diurnal activity and/or drape deviation, and, for traverses, spline interpolation of selected misties.

In order to assist in final levelling as a QC tool, as well as to evaluate the pertinence of its utilization, a micro-levelling correction was updated after each remaining passes, as follows:

- computation of a grid of updated *mreslvl*, using traverses only, use of directional 2-D spatial filtering (3000m, N225°) to obtain a raw micro-levelled grid,
- computation of a raw micro-levelling correction channel from the above micro-levelled grid,
- clipping of the raw micro-levelling correction to ±8nT, based on statistics of remaining misties, and application of a 4000m low-pass spatial filter in order to obtain the micro-levelling correction.

This micro-levelling correction channel was especially useful in the determination of the selection status of the very few sharper misties remaining in areas of excess drape deviation where safety avoidances had been required, and the Taylor correction proved less effective. Whenever a good correlation was observed between micro-levelling amplitude, mistie amplitude and the occurrence of larger drape deviation, some sharper misties could be re-selected and modelized without detrimental effect on the final grid products.

Final intersection selection was of 99.4%, where near-zero misties were achieved, the remaining 0.6% being mostly located above very sharp anomalies, often cultural, and/or in areas of safety avoidances.

Inspection of the resulting *mreslvl* grids revealed a few areas still displaying small corrugation patterns, all located within the 10 km intervals between tie-lines, where interpolated levelling models are more likely to be less effective. Such residual diurnal corrugations resulted either from the low resolution of 10 km levelling network, or from over-shoots of the spline model for a few lines that

required stronger levelling corrections, and all displayed an excellent correlation with the microlevelling correction channel. However, the TMF grids also displayed a network of anomalies with a NW-SE trend parallel to traverse lines, of strong amplitude in high-gradient areas and of low amplitude in low-gradient areas. Since most low-gradient areas correlated with higher drape altitudes, it was very likely that these anomalies could correspond to deeper geological structures that are attenuated at higher acquisition altitude. Therefore, a systematic application of micro-levelling would result in 1) the valid correction of very small diurnal corrugations in low-gradient areas, and 2) an unacceptable over-smoothing of deeper structures already attenuated by flight altitude.

An adequate solution to this problem was achieved by proceeding to a limited manual application of the micro-levelling correction, strictly targeting residual corrugations located in the intervals between tie-lines and displaying a strong correlation with diurnal activity. It was implemented by the generation of 503 pseudo-intersection points, which were assigned a correction value determined from the local amplitude the micro-levelling correction, and integrated with the real intersection points in order to locally optimize the levelling correction.

5.6.9. IGRF Residual of TMF

Finally, the IGRF residual of the leveled TMF (*mreslvli*) was computed as follows:

- computation of the IGRF field using the 2010 model, a fixed date of 2014/02/01, and a fixed acquisition altitude of 1308m,
- subtraction of the IGRF field from leveled TMF (*mreslvli = mreslvl -* IGRF).

5.6.10. Gridded Data

The following grids were delivered with the final Oasis GDB database described in Appendix C. They were computed according to a GSC method designed to very significantly alleviate the aspect of grids of vertical derivatives obtained directly from Oasis magmap1 GX, which are typically very noisy and filled with artefacts between survey lines. Additional processing consisted in two (2) phases of masking, first outside of the contractual survey boundary, and second inside areas where traverse coverage was prohibited by national security authorities.

٠	Leveled TMF	channel mreslvl	mreslvl_tmf.grd,
٠	IGRF residual of leveled TMF	channel mreslvli	mreslvl_igrf.grd,
	1 st vertical derivative of leveled TMF	channel mreslvl_vg1	mreslvl_vg1.grd,
٠	2 nd vertical derivative of leveled TMF	channel mreslvl_vg2	mreslvl_vg2.grd.

The gridding method was as follows:

- gridding of *mreslvl* and *mreslvli* channels using traverse lines only,
- preliminary computation of VG1 and VG2 grids with the magmap1 GX,
- sampling of the derivative grids into database channels (*mreslvl_vg1*, *mreslvl_vg2*), again for traverse lines only,
- re-gridding of *mreslvl_vg1* and *mreslvl_vg2* with a high number of iterations,
- application of masking (survey boundary, prohibited survey).

6. Final Deliverables

6.1. Digital Data

The following digital data were delivered to **NGU** in two (2) DVD copies:

	Final Digital Data					
Product	Data	Format and projection				
Database	Magnetic survey data	Geosoft GDB, WGS-84				
	Total magnetic field	Geosoft GRD, WGS-84				
	Residual magnetic field	Geosoft GRD, WGS-84				
Grids	First vertical derivative of the total magnetic field	Geosoft GRD, WGS-84				
	Second vertical derivative of the total magnetic field	Geosoft GRD, WGS-84				
	Digital terrain model	Geosoft GRD, WGS-84				
Report	Logistics, processing, and documentation of products	WORD and PDF				

A description of the fields delivered in the final processed database is given in Appendix C.

6.2. Other Products

• Two (2) paper copies of the final report

7. Conclusion

Data acquisition was completed using a Piper Cheyenne II PA-31T aircraft, registration C-GFON, with a single magnetometer installed in a tail stinger.

Once at the base of operation, approximately seven (7) months were necessary to acquire the total of 75,115 line-kilometers of data, including tests and calibrations on-site. In the middle of the project, the survey was temporarily halted for about one and a half (1.5) months due to bad weather conditions and shortening daylight.

Major delays were due primarily to bad weather in late fall and during winter.

Re-flights were mostly selected on the basis of deviations from drape due to inclement weather conditions. All final accepted data were of high quality, and final products were delivered as required by **NGU**.

Submitted by:

A

Khaled Moussaoui, B.Eng., MBA President EON Geosciences Inc.

Appendix A – STAS-13 Survey Area Coordinates

			way, 2013-2014 (WG Longitude	Latitude
Corner #	X	Y	°E	°N
1	527528.77	7044372.53	9.553479	63.526509
2	542023.57	7029911.30	9.841055	63.395317
3	535149.93	7022888.34	9.701961	63.333035
4	533461.14	7017286.71	9.667074	63.282927
5	538525.93	7012200.51	9.766823	63.236774
6	521521.13	6995189.38	9.426127	63.085523
7	542698.41	6973984.22	9.839921	62.893341
8	537123.39	6968412.47 6947146.73	9.729025	62.843946 62.650340
10	558334.51 551398.73	6940226.18	10.138112 10.000727	62.589265
11	551521.02	6936956.88	10.002120	62.559908
12	556879.26	6931595.55	10.104536	62.511009
13	555454.54	6930189.86	10.076420	62.498610
14	562560.23	6923107.09	10.211735	62.433918
15	561833.74	6922385.52	10.197408	62.427565
16	568937.39	6915348.26	10.332121	62.363166
17	567917.06	6914325.10	10.312009	62.354172
18	570454.64	6911186.95	10.359740	62.325540
19	574484.18	6906801.17	10.435602	62.285403
20	567786.43	6900093.01	10.303948	62.226478
21	562703.64	6905173.08	10.208025	62.272952
22	559391.39	6905811.56	10.144445	62.279223
23	528904.48	6875274.61	9.552014 9.455454	62.008721
<u>24</u> 25	523812.19 515308.24	6880401.46 6875630.31	9.455454	62.055095 62.012708
26	501500.20	6889455.72	9.028772	62.137118
27	501352.54	6889295.77	9.025938	62.135683
28	500957.77	6889690.55	9.018370	62.139228
29	500774.48	6889507.26	9.014854	62.137583
30	501176.30	6889105.43	9.022557	62.133975
31	487422.73	6874398.27	8.759857	62.001749
32	488081.50	6873211.12	8.772515	61.991114
33	493300.78	6867965.23	8.872330	61.944152
34	491844.74	6866502.12	8.844649	61.930990
35	493628.52	6863307.68	8.878742	61.902348
36	498268.41	6858770.89	8.967089	61.861672
37	496912.36	6857427.95	8.941339	61.849608
38	497717.61	6856001.25	8.956656	61.836807
39 40	494879.15	6855378.88	8.902769	61.831192
40	486479.37 481184.58	6847023.25 6852287.25	8.743906 8.643072	61.755981 61.803010
41	476682.95	6851277.30	8.557810	61.793696
43	475457.60	6850049.97	8.534739	61.782602
44	472699.96	6843323.19	8.483477	61.722032
45	477768.30	6838254.85	8.579986	61.676862
46	474877.20	6835399.45	8.525761	61.651052
47	489040.77	6821234.83	8.793967	61.524560
48	485934.10	6818114.23	8.735800	61.496445
49	485278.24	6813557.80	8.723844	61.455517
50	490477.91	6808536.55	8.821638	61.410603
51	483631.14	6801684.05	8.693992	61.348857
52	483045.53	6797495.96	8.683424	61.311235
53	488282.16	6792257.73	8.781529	61.264401
54	422014.02	6725922.32	7.573191	60.661420
55	411660.76	6711876.01	7.390143	60.533205
56	416895.47	6706656.27	7.487683	60.487471
57 58	382918.97 372757.17	6672764.05 6658950.99	6.889543 6.715139	60.174930 60.047959
59	378043.78	6653676.54	6.813117	60.002239
60	353253.75	6628879.59	6.386621	59.771707
61	351720.60	6623365.32	6.363253	59.721699
62	356752.18	6618337.94	6.456047	59.678364
63	347752.78	6609292.68	6.302946	59.594036
64	346130.15	6603463.72	6.278466	59.541158
65	351064.57	6598513.15	6.369097	59.498534
66	342260.74	6589663.20	6.220315	59.415936
67	340879.86	6584725.90	6.199672	59.371131
68	346117.77	6579440.65	6.295507	59.325667

			Longitude	Latitude
Corner #	Х	Y	°E	°N
69	336786.19	6570064.02	6.138805	59.238064
70	336591.29	6569417.73		59.232192
			6.135879	
71	322706.13	6552531.93	5.906615	59.075192
72	299271.96	6575867.56	5.477100	59.273978
73	303730.91	6580366.08	5.551109	59.316394
74	303865.99	6584213.53	5.549979	59.350945
75	298713.58	6589358.81	5.454732	59.394636
76	304221.88	6594894.25	5.546488	59.446851
77	304351.52	6599113.27	5.544908	59.484729
78	299365.26	6604155.73	5.452299	59.527569
79	304739.00	6609560.43	5.542148	59.578554
80	304739.00	6610127.42	5.541626	59.583636
81	297928.37	6616908.51	5.414792	59.641173
82	299741.82	6618721.73	5.445173	59.658299
83	300557.78	6624163.99	5.454470	59.707466
84	295831.45	6628896.12	5.366039	59.747581
85	298047.28	6631132.32	5.403231	59.768705
86	297820.35	6631334.03	5.399004	59.770402
87	296943.36	6633499.19	5.381318	59.789377
88	291575.97	6638914.21	5.280487	59.835236
89	294005.83	6641236.47	5.321447	59.857262
90	292642.56	6644780.22	5.293625	59.888335
91	288008.19	6649444.45	5.206226	59.927773
92	293475.54	6654897.93	5.298376	59.979414
93	294768.18	6659642.10	5.316760	60.022572
94	289437.49	6665061.12	5.215772	60.068427
95	298215.95	6673768.39	5.364561	60.150868
96	297055.15	6677166.49	5.340308	60.180743
97	291652.45	6682543.22	5.237604	60.226194
98	297623.56	6688514.74	5.339196	60.282713
99	298249.29	6691588.47	5.347412	60.310566
100	292698.07	6697148.23	5.241428	60.357583
101	295938.87	6700389.03	5.296744	60.388265
102	295692.31	6701194.19	5.291459	60.395355
103	289390.10	6707380.11	5.170838	60.447542
103				
104	292510.53	6710488.20	5.224190	60.477003
	291579.14	6713382.22	5.204252	60.502450
106	303259.89	6724692.28	5.405234	60.609673
107	297905.40	6730048.20	5.302136	60.654999
108	302098.78	6734241.58	5.374454	60.694668
109	299449.85	6738348.35	5.321834	60.730143
110	295788.34	6742093.49	5.250931	60.761840
111	281632.39	6756194.90	4.975916	60.880632
112	284431.66	6758994.17	5.024231	60.907234
113	283913.29	6762537.03	5.010726	60.938683
114	278872.72	6767522.58	4.912211	60.980545
115	282586.52	6771217.33	4.976475	61.015696
116	282166.12	6774037.24	4.965507	61.040718
117	276362.71	6779857.61	4.851527	61.089585
118	281784.15	6785279.05	4.945572	61.141181
119	281903.18	6788291.47	4.944311	61.168224
120	276793.13	6793666.69	4.843231	61.213479
121	282282.59	6799220.77	4.938735	61.266309
122	282441.44	6803392.13	4.936857	61.303751
123	277405.59	6808484.23	4.837042	61.346503
124	282772.48	6813892.61	4.930814	61.397966
125	282949.36	6818565.43	4.928663	61.439909
126	278167.18	6823408.06	4.833442	61.480562
127	287969.15	6833227.73	5.005719	61.573995
128	280987.55	6840371.08	4.866066	61.634053
129	285597.53	6844974.24	4.947420	61.677870
130	285999.37	6849526.32	4.949644	61.718856
130	281001.53	6854465.58	4.849384	61.760256
132	288567.00	6862086.73	4.983434	61.832759
132	290344.77	6867750.67	5.010511	61.884461
134	285241.51	6872858.79	4.907575	61.927353
135	295085.87	6882693.49	5.083343	62.020867
136	296858.04	6888211.00	5.110807	62.071237
137	291618.94	6893386.20	5.004691	62.114725
138	298800.16	6900579.13	5.133781	62.183047

Corner #	x	Y	Longitude °E	Latitude °N	
140	299151.63	6900662.38	5.140421	62.183980	
141	299012.89	6900810.36	5.137593	62.185231	
142	328832.18	6930604.96	5.680047	62.466996	
143	334028.42	6925427.12	5.785631	62.422952	
144	341108.34	6928808.91	5.919388	62.456355	
145	357064.67	6944716.97	6.215000	62.605459	
146	358455.87	6945978.60	6.241018	62.617306	
147	358767.45	6946601.76	6.246565	62.623012	
148	359130.93	6946799.07	6.253478	62.624920	
149	374731.90	6962411.42	6.545717	62.770553	
150	379880.35	6957260.06	6.650162	62.726078	
151	387390.29	6961059.68	6.794398	62.762537	
152	396912.49	6970517.12	6.974936	62.850171	
153	402899.47	6980016.86	7.086919	62.937028	
154	397646.72	6985277.22	6.980251	62.982773	
155	405167.48	6992813.50	7.124223	63.052418	
156	410252.98	6987728.90	7.227526	63.008101	
157	414421.62	6987869.16	7.309739	63.010366	
158	433393.99	7006969.69	7.676557	63.185731	
159	438605.70	7001788.94	7.782035	63.140171	
160	448774.68	7008133.52	7.981734	63.198692	
161	468835.97	7028122.08	8.376617	63.380374	
162	473993.93	7022989.29	8.480619	63.334723	
163	480216.98	7025439.78	8.604597	63.357114	
164	492142.71	7037357.97	8.842368	63.464537	
165	497346.85	7032202.42	8.946859	63.418345	
166	503335.20	7034533.21	9.066851	63.439257	
167	515475.85	7046578.43	9.311371	63.547036	
168	520695.94	7041349.56	9.415712	63.499844	
169	526894.79	7043811.09	9.540638	63.521519	

Appendix B – Calibration Tests Results

B.1. Figure of Merit (FOM)

EON Geosc	iences Inc.				
FOM Test:	MAG3: tail stinger	Date:	September 22nd 2013		
Slot:	mat5.x	Flight:	801		
Project: Client:	13003 NGU	Location: Aircraft:	Bergen Area C-GFON		
Pilot:	Alain Charon	Sensors:	1 tail stinger		
Operator	AP Camitsis	Altitude:	3088m		
Processor:	Rick Bailey	Comp:	RMS DAARC 500		
Notes: 12 seconds high pass filter used to determine amplitudes.					

MAG 3 Results	ucomp	comp	IR
Total	6.680	0.524	12.748

NW	Line		Fid range	ucomp	comp	IR
(N315)		start	end			
Pitch		53417	53432	0.622	0.033	18.848
Roll	99315	53432	53449	0.959	0.031	30.935
Yaw		53450	53461	0.383	0.034	11.265
Total				1.964	0.098	20.041

NE	Line		Fid range	ucomp	comp	IR
(N045)		start	end			
Pitch		53506	53519	0.687	0.045	15.267
Roll	99045	53520	53533	0.398	0.025	15.920
Yaw		53537	53553	0.245	0.013	18.846
Total				1.330	0.083	16.024

SE	Line		Fid range	ucomp	comp	IR
(S135)		start	end			
Pitch		53630	53644	0.415	0.067	6.194
Roll	99135	53646	53660	0.815	0.043	18.953
Yaw		53660	53677	0.320	0.040	8.000
Total				1.550	0.150	10.333

SW	Line		Fid range	ucomp	comp	IR
(N225)		start	end			
Pitch		53736	53752	0.429	0.086	4.988
Roll	99225	53753	53769	1.311	0.027	48.556
Yaw		53768	53784	0.096	0.080	1.200
Total				1.836	0.193	9.513

EON Geosc	iences Inc.				
FOM Test:	MAG3: tail stinger	Date:	Jan 31st 2014		
Slot:	mat7.x	Flight:	57		
Project:	13003	Location:	Bergen Area		
Client:	NGU	Aircraft:	C-GFON		
Pilot:	Ray Fromm	Sensors:	1 tail stinger		
Operator	AP Camitsis	Altitude:	3489m		
Processor:	Gerard Tessier	Comp:	RMS DAARC 500		
Notes: 12 seconds high pass filter used to determine amplitudes.					

MAG 3 Results	ucomp	comp	IR
Total	14.326	1.112	12.883

NW	Line		Fid range	ucomp	comp	IR
(N310)		start	end			
Pitch		38969	38977	1.291	0.107	12.065
Roll	99315	38978	38985	1.082	0.120	9.017
Yaw		37986	38996	1.608	0.101	15.921
Total				3.981	0.328	12.137

NE	Line		Fid range	ucomp	comp	IR
(N048)		start	end			
Pitch		39074	39081	1.291	0.080	16.138
Roll	99045	39082	39090	1.987	0.085	23.376
Yaw		39091	39098	0.843	0.110	7.664
Total				4.121	0.275	14.985

SE	Line		Fid range	ucomp	comp	IR
(S138)		start	end			
Pitch		39168	39175	1.497	0.091	16.451
Roll	99135	39176	39183	1.152	0.062	18.581
Yaw		39185	39194	0.590	0.071	8.310
Total				3.239	0.224	14.460

SW	Line		Fid range	ucomp	comp	IR
(N229)		start	end			
Pitch		39259	39265	1.095	0.094	11.649
Roll	99225	39266	39273	1.234	0.096	12.854
Yaw		39275	39284	0.656	0.095	6.905
Total				2.985	0.285	10.474

B.2. Altimeter Calibration

C-GFON Sept 12th 2013 Altimeter calibration(Radar A, low-alt, 2 slopes)										Bromont	RunwayH	110.4	mMSL	Bromont	, CZBM, 374', 114.0m	
EON Geo	sciences Inc.	•	Aircraft: C	-GFON						CZBM	AntH		m	Used ave	rage GPS-Z minus antH,	110.4m
		Units	mMSL	uV	m	т	mMSL	mbar	C	mMSL	mMSL	mMSL	m	Constants and formu	laes below are valid unde	r 11000m
Line		fid range	z	rrawAo	raltAo	raltAerr	DTM	PrawBo	TrawBo	bstpBo	brawBo	baltBo	baltBerr	Baro Constant	s (sea level)	units
90000	50241	50446	112.8	110206	0.0	0.1	110.3	994.3	20.9	162.0	162.5	128.2	15.4	8314.32 R - Univer	sal Gas Constant	kmol-1
90100	50719	50737	144.8	768380	32.1	0.2	110.2	992.5	20.7	177.5	178.0	143.9	-0.9			К
90200	50918	50938	176.8	1419858	64.0	0.1	110.3	988.9			208.8	175.3	-1.5	28.96442 M - Mole	cular Weight of Air	kg*kmol-1
90300	51075	51093	211.1	2114512	97.9	-0.3	110.7	984.9	19.9	243.5	243.4	210.5	-0.6	U U	• •	m*s-2
90400	51261	51281	241.1	2741489	128.6	0.4	110.0	981.5	19.7	273.2	272.9	240.4	-0.7	0.00 H - Datum	n Height	m
90500	51532	51550	272.9	3193499	158.0	-2.0	112.4	977.8	19.4	305.6	305.0	273.0	0.1	1013.25 P - Datum	Pressure	mbar
90600	51709	51729	306.8	3300803	192.2	-1.7	112.1	973.9	19.1	339.9	338.8	307.5	0.7	20.00 st - Stand	dard Temperature	Celsius
90700	51874	51893	331.7	3390059	220.7	1.9	108.5	971.0	19.0	365.5	364.2	333.3	1.6			
90800	52065	52085	370.8	3499210	255.5	-2.4	112.8	966.6	18.7	404.4	402.7	372.4	1.6			
90900	52238	52257	394.5	3577653	280.4	-1.2	111.6	964.0	18.5	427.6	425.4	395.4	0.9	Formula for MSL baro	altitude from pressure and	d temperature
91000	52418	52437	431.3	3702551	320.3	1.9	108.5	959.9	18.3	464.1	461.4	432.1	0.8	brawBo= H + (R *(Tra	awBo+ T)/ M*g)*In(P /PrawBo	o)
91500	52611	52629	597.5	4257398	497.1	12.5	97.9	941.5	16.7	630.2	623.1	596.5	-1.0			
92000	52800	52818	745.6	4654427	623.6	-9.1	119.5	925.1	15.4	781.0	768.7	744.5	-1.1			
						0.0	110.4						0.0	Formula for STP baro	altitude from pressure and	STP temperature
						0.0	110.4				baltBo	а	b	bstpBo= H + (R*(st+	• T)/ M*g)*In(P /PrawBo)	
											linest	1.0166008	-36.98			
											used	1.0166008	-36.98		_	
				L.R. a (low altit												
				a raw 0.0000488625	b raw	a used	b used	500						1		
				L.R. b (high alti		0.0000488625	-5.4	450				•		1		
				a raw	b raw	a used	b used		0000		•			1		
				0.0003186864		0.0003186864	-859.7	∑ ³⁵⁰	0000		• • • •			1		
				L.R. a and b in	tersect a	rrawAo=	3166138.5	<u> </u>	0000	•						
						raltAo=	149.3		0000					◆Radar A		
						raltAo=	149.3	R 200	0000					1		
								- 1500	0000	•				1		
										•				1		
								500	0000	•				1		
									0 +	200.0	400.0	600.	0 00	1 0 0		
													0.0			
											Z (m MS	SL)				
															J	

Appendix C – Final Processed Database Field Description

13003 Geological Survey of Norway, Stavenger-Trondheim Aeromagnetic Survey 2013

(STAS-13)

Notes: -All data acquired from Piper Cheyenne II PA-31T aircraft, registration C-GFON. -Data channels were kept are their original field sampling rate. -All proper lags have been applied to raw and processed data channels.

Channel Description:

Channel Name	Sampling Rate	Units	Description	Comments
date	01Hz	yyyy/mm/dd	Acquisition date	Start of acquisition, UTC
flt	01Hz		Flight number	
line	01Hz	llln	Line number	III: planned line number, n: segment code
fid10	10Hz	S	Fiducial	UTC seconds past midnight
hgps	01Hz	hh:mm:ss.ss	Time	UTC
х	01Hz	m	UTM Easting	WGS-84, Z32N, WayPoint PP-DGPS
у	01Hz	m	UTM Northing	WGS-84, Z32N, WayPoint PP-DGPS
Z	01Hz	m MSL	GPS altitude	WayPoint PP-DGPS
drape	01Hz	m MSL	Drape altitude	Planned flight surface
raltl	10Hz	m AGL	Radar altitude, raw	Transformed from raw readings
raltic	10Hz	m AGL	Radar altitude, edited	Corrected for noise, drift, nulled at saturation
raltSRTM	10Hz	m AGL	Radar altitude, published	Aircraft AGL altitude above topoSRTM
raltlf	10Hz	m AGL	Radar altitude, final	Merge of raltSRTM into raltIc at saturation
DTMf	01Hz	m MSL	Digital terrain model, final	DTM model, [z-2.5m-raltlf]
topoSRTM	01Hz	m MSL	Digital terrain model, published	DTM model, NGU source, 3 artefact edits
baltl	01Hz	m MSL	Baro altitude, raw	Computed from raw pressure & temperature
baltlc	01Hz	m MSL	Baro altitude, edited	Corrected for noise
baltlf	01Hz	m MSL	Baro altitude, final	Corrected for drift w.r.t. GPS altitude
baseCo	01Hz	nT	Main magnetic base, raw	
baseC	01Hz	nT	Main magnetic base, edited	Corrected for noise, cultural signal
mfluxX	10Hz	nT	Fluxgate MF-X, raw	Longitudinal vector sensor
mfluxY	10Hz	nT	Fluxgate MF-Y, raw	Transverse vector sensor
mfluxZ	10Hz	nT	Fluxgate MF-Z, raw	Vertical vector sensor
um3l	10Hz	nT	Uncompensated TMF, raw	Cesium sensor 3, lower tail stinger
m3l	10Hz	nT	Compensated TMF, raw	Cesium sensor 3, lower tail stinger
maglc	10Hz	nT	TMF, edited	Corrected for noise, aircraft & cultural signal
mreslc	10Hz	nT	TMF, partial IGRF corrected	Partial IGRF to drape surface removed
mreslct	10Hz	nT	TMF, 1 st degree Taylor corrected	Signal from AGL drape deviation removed
mreslcb	10Hz	nT	TMF, diurnal corrected	Zero-average & filtered diurnals removed
mreslvl	10Hz	nT	TMF, levelled	Iterative intersection levelling correction
mreslvl_vg1	10Hz	nT/m	1 st vertical gradient of TMF	Traverses only (Oasis magmap1.gx)
mreslvl_vg2	10Hz	nT/m ²	2 nd vertical gradient of TMF	Traverses only (Oasis magmap1.gx)
mreslvli	10Hz	nT	IGRF residual of TMF	Model: 2010, date: 2014/02/01, elev: 1308m

Appendix D – Daily Operational Report

E		N		EON GE Daily re			CES	INC				Tel: +1-	514-341	-3366,0	t-Laurent, QC, Canada H4 N 2M5 Cell: +1-514-651-6391, Fax: +1-514-341-5366		
	CIENCES	INC			·							info@eongeosciences.com Richard Bailey					
Aircraft				Projects		& Cli				Crew chie	is:		-				
Code:	C-GFON			13003	Norwa	y STAS-	13, NG	U		Pilots:					nilippe Camitsis, Ray Fromm, François-Xavier Pinte		
Туре:	Piper Che		:11							Engineers		Alain G	uilleme	tte			
FBO:	EON Airb	orne								Operators							
Inst:	Tail Mag									Processor	:	Richard	d Bailey,	Soroor	Mohammadi, Maxime Salman, Gérard Tessier		
Project				13003						Total							
Block				А						Project					Activity Histogram		
Planned Kr	ms			74641.28						74641.28					, ,		
Total flow	n Knns			79653.71						79653.71	Set-up	(SE)		13.0			
fotal accep		c .		74641.28						74641.28			מ	56.3			
										297.92				30.3			
fotal surve				297.92													
otal test-	~	hour	s	1.60							Electro		c)				
fotal ferry	hours			103.53						103.53							
otal hours	5			403.05						403.05	Weath	er(W)		108.8			
'otal days											Trainii	ng (TR))				
Average kr	ns/day	(tota	al)								Safety	(SAF)					
Average kr	ns/hou	ísur	vev)	250.54						250.54	Crew	(CR)					
Project Col		-		100.0%						100.0%				1.0			
-	<u> </u>			100.070	A	aft ha			Vil en et				report				
light info		DIL	C14	Crow		aft ho		Total	Kilometr		Daily a				Comments		
Date	Project no.	Blk	Flt	Crew (initials)	reny	Test Train	Sur- vey	Total	Flown	Accepted			y Code 4 days)		Comments		
9 Cor 42		~		(Indis)	-	TT Carl	vey				ег			ег	Rick Bailey arrives in Bergen.		
8-Sep-13	13003	A									SE	SE	SE	SE			
9-Sep-13	13003	Α									SE	SE	SE	SE	Project setup.		
10-Sep-13	13003	Α									SE	SE	SE	SE	Meetings at Bergen Airport with security and parkin		
10-Sep-15	15005	A									3L	JL	JL	J.	personnel.		
11-Sep-13	13003	Α									SE	SE	SE	SE	Project setup.		
															C-GFON flies radar altimeter test near Montreal Are		
12-Sep-13	13003	Α	901	AC, AC							SE	SE	SE	SE			
															C-GFON begins ferry. Montreal - Iqaluit. Project set		
13-Sep-13	13003	Α		AC, AC	5.5			5.5			SE	SE	SE	SE	continues in Bergen.		
															C-GFON continues ferry Iqaluit - Reykjavik. Soroor		
14-Sep-13	13003	Α		AC, AC	52			5.2			SE	SE	SE	SE	Mohammadi arrives in Bergen.		
															Project setup continues. C-GFON remains in		
15-Sep-13	13003	Α		AC, AC							w	w	w	w	Reykjavik due to weather.		
															Project setup continues. C-GFON remains in		
16-Sep-13	13003	Α		AC, AC							w	w	w	w	Reykjavik due to high winds.		
17-Sep-13	13003	Α		AC, AC							w	w	w	w	C-GFON in Reylijavik due to high winds.		
пофія	15005	~		760,760							••				C-GFON in Reykjavik due to poor weather condition		
18-Sep-13	13003	Α		AC, AC							w	w	w	w	Con Civilin Azyışavık düc tö pöör in cadici condudor		
40.0 42	42002	•		10.10	20			2.0					OF.	05	C-GFON arrives in Bergen.		
19-Sep-13	13003	Α		AC, AC	3.6			3.6			w	w	SE	SE	-		
20-Sep-13	13003	Α		AC, AC							SE	SE	SE	SE	Equipment setup and testing.		
21-Sep-13	13003	Α		AC, AC							w	w	w	w	No flight due rain and low-cloud.		
00.8. 42	43000		004	40.40				0.4							Rain and fog in morning. Compensator calibration		
22-Sep-13	13003	Α	801	AC, AC	2.1			2.1			w	w	x	X	flight in the afternoon.		
23-Sep-13	13003	Α	001	AC, AC	0.9		12	2.1	269.55	269.55	w	w	Р	Р	Fog in morning. flt001 - Ties 6270, 6260, 6250, 624		
•													-	-	fit002 - lines 2090, 2100, 2110, 2120, 2130, 2140,		
24-Sep-13	13003	Α	002	AC, AC	0.5		32	3.7	877.86	877.86	х	Р	Р	Р	2150, 2160.		
															fit003 - lines *1710, *1720 (drape dev. to be re-flow		
															*(flow n as partials due to cloud), 2170 (xy/vertical		
25-Sep-13	13003	Α	003	AC, AC	0.6		1.1	1.7	218.73	76.58	Р	Р	w	w	dev. due to cloud), . Hight terminated early - cloud		
															Inspection of C-GEON by Jornar Gellein (NGU) in		
															afternoon.		
26-Sep-13	13003	Α	004	AC.AC	0.9		22	3.1	639.29	639.29	w	w	Р	Р	fit004 - lines *6050, *6060 *(drape dev. due to clou		
zo-sep-is	15005	A	004	AG, AG	0.9		22	3.1	03973	05973	vv	vv	P	P			
	13003	А	005	AC, AC	0.4		3.6	4.0	959.03	959.03					fit005 - lines *1820, 1830, *1840, 1850, *1860, *18		
27-Sep-13	15005		005	nu, nu	0.4		5.0	4.0	553.05	333.03	Р	Р	Р	Р	*1880, *1890, 1900, *1910. fit006 - lines 1920, 193		
Li cop-io	13003	Α	006	AC, AC	0.2		3.1	3.3	825.69	825.69	•	•	'	•	1940, *1950, *1960, 1970, 1980, *1990 *(some drap		
	13003	~	000	10,10			J.I	3.3	02.0.09	02.0.09					dev due to cloud).		
28-Sep-13	13003	Α		AC, AC							w	w	w	w	No flight - cloud.		
															No flight - cloud. Ray Fromm (Captain) arrives on si		
29-Sep-13	13003	Α		AC, AC							w	w	w	w			
25 Ocp 15	1														fit007 - lines 2030, 2040, 2050, 2060, 2070, 2080,		
-						1	4.4	4.9	1147.83	1147.83	Р	Р	Р	Р			
30-Sep-13	13003	Α	007	RF, AC	0.5			1.0	1141.05	1141.00	Р	F		•	2171, 2180, 2190, 2200.		
-	13003 13003	A A	007 008	RF,AC RF,AC	0.5			1.0	1122.57	1122.57	P	Р	Р	Р	2171, 2180, 2190, 2200. ftt008 - lines 2210, 2220, 2230, 2240, 2250, 2260,		

Flight infor	mation				Aircr	aft ho	ours		Kilometr	eage	Daily a	activity	report		
Date	Project no.	Blk	Flt	Crew (initials)	Ferry	Test Train	Sur- vey	Total	Flown	Accepted			y Code 4 days)		Comments
2-Oct-13	13003	A	009	RF, AC	0.6		3.2	3.8	906.65	906.65	Р	P	P	Ρ	flt009 - lines 2290, *2300 *(briefly exceeds diurnal spec), 2310, 2320, 2330, 2340.
3-Oct-13	13003	A	010	RF, AC	0.7		3.3	4.0	927.56	927.56	w	Р	Р	Ρ	flt010 - Fog in morning. lines 2350, 2360, 2370, 2380, 2390, 2400.
4-Oct-13	13003	A									w	w	w	w	No flight due to rain. Alain Guillemette (AME) arrives on site.
5-Oct-13	13003	А									W	w	w	W	No flight due to rain. Maintenance on C-GFON.
6-Oct-13	13003	А									W	w	w	W	No flight due to rain. Maintenance on C-GFON.
7-Oct-13	13003	А									w	w	w	W	No flight due to rain.
8-Oct-13	13003	А									W	W	w	W	No flight due to rain.
9-Oct-13	13003	A		RF,AC,AG							W	w	w	w	No production flight due to low cloud. Maintenance test flight in afternoon.
10-Oct-13	13003	A	011	RF, AC	0.4		1.6	2.0	20.50		Р	Р	Р	Р	flt011 - Tie *6150, Line *5930 *(large segment of line flow n above drape - to be evaluated). flt012 - lines
10-001-13	13003	А	012	RF, AC	0.7		2.7	3.4	615.57	615.57	Г	ſ	Г	F	5920, 5910, 5900, 5890, 5880, 5870, 5860, 5850, 5840, 5830, 5820, 5810, 5800. Tie 6040.
11-Oct-13	13003	А	013	RF, AC	0.8		3.3	4.1	963.95	963.95	Р	Р	Р	Р	flt013 - lines 2410, 2420, 2440, 2450, 2460, 2470. flt014 lines 2480, 2490, 2500, 2510.
	13003	Α	014	RF, AC	0.7		2.3	3.0	666.08	666.08					
12-Oct-13	13003 13003	A	015 016	RF, AC RF, AC	0.8 0.9		3.5 2.3	4.3 3.2	1023.78 697.44	1023.78 697.44	Ρ	Р	Р	Ρ	flt015 - lines 2520, 2530, 2540, 2550, 2560, 2570. flt016 - lines 2580, 2590, 2600, 2610.
13-Oct-13	13003	А	017	RF, AC	0.9		3.5	4.4	1083.85	1083.85	W	Р	Р	Ρ	Fog in morning. flt017 - lines 2620, 2630, 2640, 2650, 2660, 2670.
14-Oct-13	13003	Α									W	W	W	W	No flight due to fog.
15-Oct-13	13003	А									W	W	W	W	No flight due to low cloud.
16-Oct-13	13003	A	018	RF, AC	0.5		0.4	0.9	123.54	111.94	w	Ρ	Ρ	w	flt018 - lines *2680, *2690 *(flow n as partials due to low cloud). Flight terminated due to cloud. Delivery 1 - flt001-flt017 uploaded to ftp site.
17-Oct-13	13003	А	019	RF, AC	0.6		2.5	3.1	581.17	548.13	w	Р	Р	P	Morning cloud. flt019 - lines *1010, *1011 (acc. re- flight of line 1010), *1020, *1030, 1040, 1050, 1060, 1070, 1080, 1090, 1100, 1110, 1120, 1130, 1140,
	13003	A	020	RF, AC	0.5		1.5	2.0	363.29	363.29		Ĺ		•	1150, *(drape dev - petrol plant) flt020 - lines 1160, 1170, 1180, 1190, 1200, 1210, 1220, 1230
18-Oct-13	13003	A	021	RF, AC	0.2		3.9	4.1	1027.24	1024.64	х	Ρ	Ρ	Ρ	Morning meeting with tow er regarding flight through Bergen zone. flt021 - lines 1670, 1680, 1690, 1700, *1721 *(completed Eastern section of partial), 1730, 1740, 1760, 1770, 1780, 1790, 1800, 1810.
19-Oct-13	13003	A	022	RF, AC	0.9		3.2	4.1	973.30	971.98	w	Р	Ρ	Ρ	Low cloud in morning. flt022 - lines *2680, *2690, 2700, 2710, 2720, 2730 *(completed Eastern end of partial).
20-Oct-13	13003	A	023	RF, AC	1.0		3.1	4.1	922.85	907.75	w	Ρ	Р	Ρ	Cloud in mountains in morning. flt023 - lines *2740, *2750, **2760 **(flow n as partial due to cloud), 2770, 2780 *(drape dev on eastern end of line, due to cloud). Khaled Moussaoui arrives in Bergen.
21-Oct-13	13003	А	024	RF, AC	0.4		3.9	4.3	912.47	912.47	Р	Р	Р	Р	ft024 - lines 5650, 5660, 5670, 5680 5690 5700, 5710, 5720, 5730, 5740, 5750, 5760, 5770, 5780, 5790, 5931 (re-flight of 5930 (drape dev.)) *6110, *6120 *(flow nas partial due to cloud). ft025 - lines
	13003	A	025	RF, AC	0.6		2.3	2.9	616.95	616.95					5600, 5610, 5620, 5630, 5640, 6090.
22-Oct-13	13003	Α									W	W	W	W	No flight due to rain.
23-Oct-13	13003	Α									W	W	W	W	No flight due to rain.
24-Oct-13	13003	А									W	w	w	w	No flight due to rain. Khaled Moussaoui leaves Bergen.
25-Oct-13	13003	A	026	RF, AC	0.1		3.7	3.8	816.84	816.84	w	w	Ρ	Ρ	Cloud in mountains in morning. flt026 - lines 1240, 1250, 1260, 1270, 1280, 1290, 1300, 1310, 1320, 1330, 1340, 1350, 1360, 1370
26-Oct-13	13003	А		RF, AC							W	W	W	W	No flight due to rain.
27-Oct-13	13003	A	027	RF, AC	0.8		3.0	3.8	747.02	743.32	w	Р	Р	Р	flt027 - lines 5510, 5520, 5530, 5540, 5550, 5560, 5570, 5580, 5590, Tie - *6030 *(flow n as partial due to cloud). flt028 - lines 5500, Tie 6010, 6022
	13003	A	028	RF, AC	0.9		1.0	1.9	143.84	143.84		,	<u>,</u>		· · · · · · · · · · · · · · · · · · ·
28-Oct-13	13003	A	020		0.2		0.1	0.4			W	W	W	W	No flight due to low cloud. flt029 - line *1380 - SCRUB *(flow n as partial due to
29-Oct-13	13003	A A	029 030	RF, AC	0.3		0.1	0.4			w	w	Р	W	cloud).Flight terminated due to cloud.
	13003		-	RF, AC			<u> </u>	-	000	000.00					flt031 - lines *2790, *2800, *2810, *2820, *2830,
30-Oct-13	13003	A A	031	RF, AC	0.5 0.6		2.5	3.0 1.1	630.57	623.32	Ρ	Р	Р	Ρ	*2840, *2850,*2860, Tie **6031 **(completed the partial of tie 6030). flt032 - lines *2870, *2880 *(flow n
	13003 13003	A	032 033	RF, AC RF, AC	0.6		0.5 3.0	1.1 4.3	142.17 810.61	142.17 810.61					as partial due to cloud) flt033 - lines 5400, 5410, 5420, 5430, 5460, 5470,
31-Oct-13	13003	A	033	RF, AC	1.2		0.0	1.2	010.01	010.01	W	Р	Р	Ρ	5480, 5490
		. <u> </u>	<u> </u>	,						I I					

Flight infor	mation				Aircr	aft ho	ours		Kilometr	eage	Daily activity report				
Date	Project no.	Blk	Flt	Crew (initials)	Ferry	Test Train	Sur- vey	Total	Flown	Accepted			/Code 4 days)		Comments
1-Nov-13	13003	A	035	RF, AC	1.2		3.0	4.2	827.80	827.80	Р	Р	Р	Р	flt035 - lines 5440, 5450, 5390, 5380, 5370, 5360,5350. flt036 - lines 5310, 5320, 5330, 5340
	13003 13003	A	036 037	RF, AC RF, AC	1.3 1.0		1.9 3.3	3.2 4.3	552.12 953.14	552.12 953.14					flt037 5300, 5290, 5270, 5260, 5250, 5240 - lines
2-Nov-13	13003	A	038	RF, AC	1.0		1.1	2.1	321.06	321.06	Р	Р	Р	Р	flt038 - lines 5220, 5230
	13003	Α	039	RF, AC	0.7		2.2	2.9	516.35	516.35	_		_	_	flt039 lines 5180, 5190, 5200, 5210 .Tie 6020. flt040 -
3-Nov-13	13003	А	040	RF, AC	0.5		2.3	2.8	487.80	487.80	Р	Р	Ρ	Р	lines *1381, 1400 *(completed the partial of 1380). Tie 6070
4-Nov-13	13003	Α	041	RF, AC	0.7		1.5	2.2	343.84	343.84	w	Р	Р	w	flt041- lines 2890, *2900 *(flow n as partials due to low cloud) flt042 -Tie *6111 *(completed southern
4-1100-13	13003	Α	042	RF, AC	0.6		0.6	1.2	184.74	169.70	**	' 	'	**	section of partial tie 6110)
5-Nov-13	13003	Α		RF, AC							W	w	w	W	No flight due to low cloud.
6-Nov-13	13003	А	043	RF, AC	0.3		2.9	3.2	768.11	768.11	w	Р	Р	Р	flt043- lines 1410, 1420, 1430, 1440, 1450, 1460, 1470, 1480, *1490, *1500 *(drape dev due to w indmil)
	13003	Α	044	RF, AC	1.1		2.8	3.9	737.46	681.36		_	_	_	flt044- lines *5140, *5150, *5160, 5170, **5181,
7-Nov-13	13003	А	045	RF, AC	1.0			1.0			w	Р	Ρ	Р	**5191, **5201, **5211. *(flow n as partial due to cloud) **(completed Eastern section of partial)
	13003	А	046	RF, AC	1.0		3.0	4.0	818.18	758.27					flt046- lines 5100, 5110, 5120, 5130, *5141, *5151,
8-Nov-13	13003	А	047	RF, AC	1.2		1.0	2.2	302.77	302.77	W	Р	Р	Р	*5161 *(completed Eastern section of partial). flt047- lines 5080, 5090
9-Nov-13	13003	А		RF, AC							W	w	w	w	No flight due to low cloud. Maintenance on C-GFON.
10-Nov-13	13003	А		RF, AC							w	w	w	w	No flight due to low cloud. Maintenance on C-GFON.
11-Nov-13	13003	A		RF, AC							W	w	W	W	No flight due to low cloud. Maintenance on C-GFON.
				-											No flight due to low cloud. Maintenance test flight in
12-Nov-13	13003	A		RF, AC							W	W	W	W	morning.
13-Nov-13	13003	A		RF, AC							W	W	W	W	No flight due to low cloud.
14-Nov-13	13003	Α		RF, AC							W	W	W	W	No flight due to low cloud.
15-Nov-13	13003	Α		RF, AC							W	W	W	W	No flight due to low cloud.
16-Nov-13	13003	А		RF, AC							W	w	w	W	No flight due to low cloud.
17-Nov-13	13003	А	048	RF, AC	0.3		1.2	1.5	304.61	304.61	w	w	Р	w	flt048- lines *1510, *1520, *1530, *1540, *1550, *1560 *(flow n as partial due to cloud)
18-Nov-13	13003	А		RF, AC							w	w	w	w	No flight due to low cloud.
19-Nov-13	13003	А		RF, AC							w	w	w	w	No flight due to low cloud.
	13003	A	049	RF, AC	0.4		3.9	4.3	1106.57	1106.57					flt049- lines 5030, 5040, 5050, 5060, 5070, tie 6130.
20-Nov-13	13003	A	050	RF, AC	0.2		2.0	2.2	528.53	528.53	Р	Р	Р	Р	flt050- line 5020, tie 6160. Odleiv and Marie-Andree visit Bergen.
	13003	A	051	RF, AC	0.7		3.6	4.3	982.06	982.06					flt051- lines 4960, 4970, 4980, 5000, 5010, tie *6140
21-Nov-13	13003	A	052	RF, AC	1.2		1.7	2.9	481.87	481.87	Р	Р	Ρ	Р	*(flow n as partial due to cloud). flt052- line 4930, 4940, 4950.
22-Nov-13	13003	А	053	RF, AC	0.2		2.2	2.4	572.60	572.60	w	Р	Р	w	flt053- lines 1570, 1580, *1590, *1600,*1610, *1620, *1630, *1640, *1650, *1660 *(flow n as partial due to cloud).
23-Nov-13	13003	А		RF, AC							W	w	w	w	No flight due to low cloud.
24-Nov-13	13003	А		RF, AC							W	w	w	w	No flight due to low cloud.
25-Nov-13	13003	A	054	RF, AC	0.8		2.8	3.6	687.40	446.24	w	Р	Р	w	flt054- lines 1390, *1511, *1521, *1531,*1541, *1551, *1561, *1591, *1601, *1621, *1631, *1641, *1651, *1661 *(completed Eastern section of partial lines).
26-Nov-13	13003	А		RF, AC							W	w	w	w	No flight due to low cloud.
27-Nov-13	13003	А		RF, AC							w	w	w	w	No flight due to low cloud.
28-Nov-13	13003	A	055	RF, AC	0.5			0.5			w	w	Р	w	The flight was aborted due to low clouds with no production.
29-Nov-13	13003	А		RF, AC							W	w	w	w	No flight due to low cloud.
30-Nov-13	13003	А		RF, AC							w	w	w	w	No flight due to low cloud.
1-Dec-13	13003	А		RF, AC							w	w	w	w	No flight due to low cloud.
2-Dec-13	13003	A		RF, AC							W	w	w	W	No flight due to low cloud.
3-Dec-13	13003	A		RF, AC							w	w	w	w	No flight due to low cloud.
4-Dec-13	13003	A		RF, AC							W	w	w	W	No flight due to low cloud.
	13003	A		-	\vdash						W	w	W	W	No flight due to low cloud.
5-Dec-13				RF, AC	\vdash										No flight due to low cloud.
6-Dec-13	13003	A		RF, AC	<u> </u>						W	W	W	W	No flight due to low cloud.
7-Dec-13	13003	A		RF, AC	<u> </u>						W	W	W	W	Crew demobilized from Norw ay. Project halted due to
8-Dec-13	13003	A		RF, AC							SE	SE	SE	SE	poor w eather conditions and shortening days.
28-Jan-14	13003	А		RF, AC							SE	SE	SE	SE	Crew (Max Salman, Ray Fromm) returned to Norway. Project restarted.

Flight infor	mation				Aircr	aft ho	ours		Kilometr	eage	Daily activity report				
Date	Project	Blk	Flt	Crew (initials)	Ferry		Sur- vey	Total	Flown	Accepted		Activit	/Code 4 days)		Comments
29-Jan-14	no. 13003	А		RF, AC		main	vey				SE	SE	SE	SE	Mag base stations setup. André-Philippe Camitsis
30-Jan-14	13003	А	056	RF, AC	0.7	0.4		1.1			SE	SE	SE	SE	arrives on-site. GPS base station setup. FOM flight in the afternoon: POOR.
31-Jan-14	13003	А	057	RF, AC	1.0	1.2		2.2			SE	SE	w	W	FOM flight in the morning. Low cloud in the afternoon.
1-Feb-14	13003	А	058	RF, AC	1.1		1.1	2.2	267.90	267.90	Р	w	w	W	flt058- lines 2910-2920 (partials), cut short due to
2-Feb-14	13003	A	000	111,710				2.2	201.00	207.00	w	w	w	w	low cloud and heavy turbulence. No flight due to low cloud.
	13003	A	059	RF, AC	1.1		3.5	4.6	963.66	963.66					flt059- lines 4870-4920. flt060- lines 4830-4840,
3-Feb-14	13003	А	060	RF, AC	1.2		1.9	3.1	531.79	531.79	Р	Ρ	Р	Ρ	4850-4860 (partials).
4-Feb-14	13003	A	061	RF, AC	1.0		2.1	3.1	559.50	559.50	Р	Р	Ρ	Р	flt061- lines 4770-4820 (partials). flt062- lines 4730- 4760 (partials).
	13003 13003	A	062 063	RF, AC RF, AC	1.2 0.7		1.2 4.1	2.4 4.8	332.20 1127.50	332.20 1127.50	_	_			flt063- lines 2930-3020 (partials). flt064- lines 3030-
5-Feb-14	13003	Α	064	RF, AC	0.5		1.8	2.3	498.90	498.90	Р	Р	Ρ	Р	3050 (partials).
6-Feb-14	13003	А	065	RF, AC	1.2		1.6	2.8	451.10	451.10	Ρ	W	W	W	flt065- lines 3060-3090 (partials), cut short due to low cloud and heavy turbulence.
7-Feb-14	13003	Α		RF, AC							W	W	W	W	No flight due to low cloud.
8-Feb-14	13003	Α		RF, AC							W	W	W	W	No flight due to low cloud and freezing fog.
9-Feb-14	13003	A		RF, AC							W	W	W	W	No flight due to low cloud. No flight due to low cloud.
10-Feb-14	13003	A		RF, AC							W	W	W	W	•
11-Feb-14	13003 13003	A	066 067	RF, AC RF, AC	1.0 1.1		3.1 2.7	4.1 3.8	878.02 765.34	714.50 735.73	Р	Р	Ρ	Ρ	flt066- lines 4670-4700, 4710-4720 (partials). flt067- lines 4600-4630, 4640 & 4660 (partials)
12-Feb-14	13003	A	007	RF, AC	1.1		2.1	3.0	705.54	133.13	w	w	w	w	No flight due to low cloud.
13-Feb-14	13003	A		RF, AC							w	w	w	w	No flight due to low cloud, and severe turbulence.
14-Feb-14	13003	A		RF. AC							W	W	W	W	No flight due to low cloud.
15-Feb-14	13003	A		RF, AC							w	w	w	w	No flight due to low cloud.
16-Feb-14	13003	A		RF, AC							W	w	w	W	No flight due to low cloud.
17-Feb-14	13003	A		RF, AC							W	W	W	W	No flight due to low cloud.
18-Feb-14	13003	А	068	RF, AC	0.5		3.1	3.6	826.92	688.78	Р	Р	Р	Р	flt068- lines 1710*, 1720*, 2760*, 2790*, 2800*, 2900*, 2910*, 2920*, Tie 6230 flt069- 3010*-3070*, Tie 6220 (*Completed partials)
	13003	Α	069	RF, AC	0.9		2.4	3.3	627.69	539.03					
19-Feb-14	13003 13003	A	070 071	RF, AC RF, AC	0.4		3.7 3.7	4.1 4.4	915.31 1041.79	898.11 1002.99	Р	Р	Ρ	Ρ	flt070- lines 2810*, 2820*, Ties 6080, 6100 flt071- lines (3100 - 3140)** (*Partial lines) (**Completed partials)
20-Feb-14	13003	A	072	RF, AC	0.7		3.2	3.9	770.31	723.93	Р	Р	w	w	flt072- (2810, 2820)**, 3150, 3160, 3170*
21-Feb-14	13003	A		RF, AC							W	W	W	W	(*Partial lines) (**Completed partials) No flying due to low clouds.
22-Feb-14	13003	A		RF, AC							W	W	W	W	No flying due to low clouds.
23-Feb-14	13003	А		RF, AC							W	W	W	W	No flying due to low clouds.
24-Feb-14	13003	А		RF, AC							W	W	W	W	No flying due to low clouds.
	13003	Α	73	RF, AC	1.2		2.8	4.0	718.16	718.16					flt073- lines 4540, 4540, (4560-4590)*
25-Feb-14	13003	А	74	RF, AC	1.2		2.4	3.6	633.30	633.30	Р	Р	Ρ	Ρ	flt074- lines (4450-4490)*, (4510,4530)* (*Partial lines)
26-Feb-14	13003	А	75	RF, AC	1.4		1.4	2.8	375.80	375.80	w	w	Ρ	w	flt075- lines 3180*, (3230-3250)* (*Partial Lines) Flight terminated early due to low cloud and turbulence.
27-Feb-14	13003	А		RF, AC							W	W	W	W	No flying due to low clouds.
28-Feb-14	13003	Α		RF, AC							W	W	W	W	No flying due to low clouds.
1-Mar-14	13003	А	76	RF, AC	1.8		2.8	4.6	793.20	793.20	W	W	Ρ	Ρ	flt076- lines (4360-4400, 4420-4440)* (*Partial Lines)
2-Mar-14	13003	Α	77	RF, AC	1.3		0.3	1.6	88.10	88.10	W	W	Р	W	flt077- lines (3260, 3270)* (*Partial Lines)
3-Mar-14	13003	Α		RF, AC							W	W	W	W	No flying due to low clouds.
4-Mar-14	13003	А		RF, AC							W	W	W	W	No flight due to low cloud. Maintenance on C-GFON
5-Mar-14	13003	А		RF, AC							W	W	W	W	No flight due to low cloud. Maintenance on C-GFON
6-Mar-14	13003	Α		RF, AC							W	W	W	W	No flight due to low cloud. Maintenance on C-GFON
7-Mar-14	13003	А		RF, AC							W	W	W	W	No flight due to low cloud. Maintenance on C-GFON
8-Mar-14	13003	А	78	RF, AC							W	W	Ρ	W	The flight was aborted due to low clouds with no production.
9-Mar-14	13003	A		RF, AC							W	W	W	W	No flight due to low cloud.
10-Mar-14	13003	A		RF, AC							W	W	W	W	No flight due to low cloud.
11-Mar-14	13003 13003	A	79 80	RF, AC RF, AC	1.2 1.0		3.5 0.5	4.7 1.5	907.57 152.13	820.40 152.13	W	Р	Ρ	Ρ	flt079- lines 4320-4350, (4360-4390)** flt080- line 4310 (**Completed Partials)
12-Mar-14	13003	А	81	RF, AC	0.6		3.6	4.2	869.95	865.75	W	Р	Ρ	w	flt081- lines 3000**, (3280,3290,3310-3360)*, Tie lines T6210 (*Partial Lines **Completed Partials). Return flight to Bergen after refuel, no production.
13-Mar-14	13003	Α		RF, AC							W	W	W	W	No flight due to low cloud.
14-Mar-14	13003	Α		RF, AC							W	W	W	W	No flight due to low cloud.

Flight infor	mation				Aircr	aft ho	ours		Kilometr	eage	Daily activity report		-		
Date	Project no.	Blk	Flt	Crew (initials)	Ferry	Test Train	Sur- vey	Total	Flown	Accepted		Activity (per 1/-	/Code 4 davs)		Comments
15-Mar-14	13003	А		RF, AC			10)				W	W	W	W	No flight due to low cloud.
16-Mar-14	13003	А		RF, AC							W	W	W	W	No flight due to low cloud.
17-Mar-14	13003	А		RF, AC							W	W	W	W	No flight due to low cloud.
18-Mar-14	13003	Α		RF, AC							W	W	W	W	No flight due to low cloud.
19-Mar-14	13003	А		RF, AC							W	W	W	W	No flight due to low cloud and fog.
20-Mar-14	13003	Α		RF, AC							W	W	W	W	No flight due to low cloud and freezing fog.
21-Mar-14	13003	А		RF, AC							W	W	W	W	No flight due to low cloud, fog, heavy rain, hail.
22-Mar-14	13003	А	82	RF, AC	1.9		1.8	3.7	464.52	464.52	W	Р	Ρ	W	flt082- lines 4300, (4290-4270)* (*Partial Lines)
23-Mar-14	13003	А		RF, AC							W	W	W	W	No flight due to low cloud.
24-Mar-14	13003	A	83	RF, AC	1.1		0.2	1.3	54.69	54.69	Ρ	Р	Ρ	Р	flt083- lines 4260* flt084- lines 4259, (4510-4550, 4640, 4660, 4710, 4720, 4760-4800, 4860)**
	13003	А	84	RF, AC	0.4		4.5	4.9	1198.41	945.78					(*Partial Lines **Completed Partials)
25-Mar-14	13003	A	85	RF, AC	0.5		4.4	4.9	1216.05	953.55	Р	Р	Р	Р	flt085- lines 4240, 4400**, 4430**, (4450-4490)**, (4730-4750)**, 4810**, 4820**, 4850** flt086- lines 4200-4230, 4410, 4420** 4440**, (4260-
	13003	A	86	RF, AC	0.4		4.3	4.7	1176.18	1088.24					4290)** (**Completed Partials)
00 Max 44	13003	А	87	RF, AC	0.4		3.8	4.2	1078.90	1066.26	Р	Р	Р	Р	flt087- lines 4120, 4130*, 4140*, 4150-4190 flt088- lines (4040-4110)*, 4130**, 4140**
26-Mar-14	13003	А	88	RF, AC	0.5		4.2	4.7	1218.96	1182.61	Р	Р	Р	Р	(*Partial Lines **Completed Partials)
	13003	А	89	RF, AC	0.5		3.6	4.1	1103.98	1103.98					flt089- lines (3960-4030)*
27-Mar-14	13003	А	90	RF, AC	0.5		3.1	3.6	941.54	941.54	Р	Р	Р	Ρ	flt090- lines (3900-3950)*
				-											(*Partial Lines) flt091- lines (3800-3890)*
28-Mar-14	13003	A	91	RF, AC	0.6		3.6	4.2	1078.89	1078.89	Р	Р	Р	Р	flt092- lines (3740-3790)*
	13003	Α	92	RF, AC	0.7		2.0	2.7	611.47	611.47					(*Partial Lines)
29-Mar-14	13003	А	93	RF, AC	0.7		2.6	3.3	834.77	834.77	Р	Р	Р	Р	flt093- lines 3700-3730 flt094- lines 3690, 3680*, T6120**, T6170
23-14	13003	Α	94	RF, AC	0.5		3.5	4.0	897.00	882.14			'		(*Partial Lines **Completed Partials)
00 14 44	13003	А	95	RF, AC	0.8		3.3	4.1	1052.98	1052.98	-	6	Р	6	flt095- lines 3370-3410
30-Mar-14	13003	А	96	RF, AC	0.9		1.3	2.2	349.94	349.94	Р	Р	Р	Ρ	flt096- lines (3420-3450)* (*Partial Lines)
31-Mar-14	13003	А	97	AC, AC	1.3		2.1	3.4	452.22	435.12	W	Р	Р	W	fit097- lines 2000-2020, 2430
	13003	А	98	FX, AC	1.1		2.9	4.0	572.30	458.50					flt098- lines (4020-4110)**
1-Apr-14	13003	A	99	FX, AC	0.6		3.0	3.6	613.30	486.04	Ρ	Р	Р	Ρ	flt099- lines (3900-4000)**
			99		0.0		3.0	3.0	013.30	400.04					(**Completed Partials) No flight due to low cloud.
2-Apr-14	13003	A		FX, AC							W	W	W	W	flt100- lines (3820-3890)**, 4030**
3-Apr-14	13003	A	100	FX, AC	1.0		3.2	4.2	863.20	714.60	Р	Р	Р	Р	flt101- lines 3360, (3740-3810)**
• · • · · ·	13003	А	101	FX, AC	0.9		3.8	4.7	1104.60	984.53		-	-		(**Completed Partials)
4-Apr-14	13003 13003	A	102 103	FX, AC FX, AC	0.3 0.4		2.8 3.7	3.1 4.1	809.08 1014.99	789.09 915.64	Р	Р	Р	Р	flt102- lines (3260, 3270)**, (3650, 3660)*, 3670 flt103- lines (3080, 3080, 3180, 3230-3250)**, 3460 (*Partial Lines **Completed Partials)
E Ann 44			105		0.4		5.7	7.1	1014.33	313.04	14/	14/	14/	14/	No flight due to low cloud. Maintenance on C-GFON
5-Apr-14	13003	A		FX, AC							W	W	W	W	No flight due to low cloud. Maintenance on C-GFON
6-Apr-14	13003	A		FX, AC							W	W	W	W	No flight due to low cloud. Maintenance on C-GFON
7-Apr-14	13003	A		FX, AC							W	W	W	W	No flight due to low cloud. Maintenance on C-GFON
8-Apr-14 9-Apr-14	13003 13003	A		FX, AC FX, AC							W	W	W	W	No flight due to low cloud.
10-Apr-14	13003	A		FX, AC							W	W	W	W	No flight due to low cloud.
11-Apr-14	13003	A		FX, AC			-				W	W	W	W	No flight due to low cloud.
12-Apr-14	13003	A		FX, AC FX, AC							W	W	W	W	No flight due to low cloud.
13-Apr-14	13003	A		FX, AC							W	W	W	W	No flight due to low cloud.
13-Apr-14	13003	A		FX, AC FX, AC						l	W	W	W	W	No flight due to low cloud.
15-Apr-14	13003	A	104	FX, AC							w	w	w	W	The flight was aborted due to low clouds with no production.
16-Apr-14	13003	А		FX, AC							W	W	W	W	No flight due to low cloud.
17-Apr-14	13003	А		FX, AC							W	W	W	W	No flight due to low cloud.
	13003	Α	105	FX, AC	0.7		3.3	4.0	974.49	943.56	-	-	-	-	flt105- lines 3450**, (3470-3500)*, 3510
18-Apr-14	13003	Α	106	FX, AC	0.5		3.7	4.2	1106.26	1106.26	Ρ	Ρ	Ρ	Р	flt106- lines 3520-3540, (3550, 3560*), 3570
19-Apr-14	13003	A	107	FX, AC	0.5		3.6	4.1	1013.35	999.63	Р	Р	Р	Ρ	flt107- (3550-3560)**, 3580-3610 flt108- 3620-3640, 3650**
	13003	A	108	FX, AC	0.3		2.8	3.1	842.34	719.54					(**Completed Partials)
00.4== 1.1	13003	A	109	FX, AC	0.5		3.3	3.8	773.19	491.27					flt109- lines (3350, 3340, 3660, 3680, 3740)** flt110- lines (3330, 3420-3440, 4620, 4630, 4670- 4700)**
20-Apr-14	13003 13003	A	110 111	FX, AC FX, AC	0.8 0.6		3.5 2.0	4.3 2.6	782.10 546.46	648.30 427.00	Ρ	Ρ	Ρ	Ρ	4700)** flt111- lines (2990, 3000, 3320)**, 3190 (*Partial Lines **Completed Partials)
	-		-		0.7										flt112- lines (2930-2980)**, 3200, 3210
21-Apr-14	13003	A	112	FX, AC			3.7	4.4	1052.02	955.31	Ρ	Р	Р	Ρ	flt113- lines (2830-2880)**, 3220
	13003	A	113	FX, AC	1.0		3.6	4.6	998.52	908.72					(*Partial Lines **Completed Partials)

Flight info	ight information				Aircr	aft ho	ours		Kilometr	eage	Daily a	activity	report		
Date	Project no.	Blk	Flt	Crew (initials)	. ,	Test Train		Total	Flown	Accepted		Activity Code (per 1/4 days)			Comments
22-Apr-14	13003	А	114	FX, AC	0.5		3.7	4.2	799.23	708.74	Р	Р	P	P	flt114- lines 3310, (3470-3500)**, 4120**, 4500, 4650 flt115- lines (1950, 1960, 1990)**, (3170, 3280, 3290,
22 <i>7</i> pr 11	13003	А	115	FX, AC	0.5		3.4	3.9	921.10	726.43				•	3300), Tie T6150* (*Partial Lines **Completed Partials)
23-Apr-14	13003	А	116	FX, AC	0.5		3.7	4.2	836.39	572.88	Р	Р	Р	Р	flt116- lines (4880, 4870, 4940)**, 4990, 5280, Tie T6200
-	13003	А	117	FX, AC	0.7		2.3	3.0	624.50	351.90					flt117- lines (1840, 1860, 1890, 1910)**, Tie T6180 (**Completed)
24-Apr-14	13003	А	118	FX, AC	0.5		2.6	3.1	676.69	559.12	Р	Р	Р	Р	flt118- Ties T6110, (T6150)**, T6190-6192 flt119- Ties T6050, T6130
	13003	А	119	FX, AC	0.5		2.4	2.9	648.18						(*Partial Lines **Completed Partials)
25-Apr-14	13003	А													Survey completed.
26-Apr-14	13003	Α													C-GFON begins ferry back to Montreal.