SCARF - THE SWARM SATELLITE CONSTELLATION APPLICATION AND RESEARCH FACILITY

Nils Olsen¹, Patrick Alken^{2,8}, Ciaran Beggan³, Arnaud Chulliat^{2,8}, Eelco Doornbos⁴, Joao Encarnacao⁴, Rune Floberghagen⁵, Eigil A Friis-Christensen¹, Brian Hamilton³, Gauthier Hulot², Jose van den IJssel⁴, Alexei V Kuvshinov⁶, Vincent Lesur⁷, Hermann Luhr⁷, Susan Macmillan³, Stefan Maus⁸, Poul Erik H Olsen¹, Jaeheung Park⁷, Gernot Plank⁹, Christoph Püthe⁶, Patricia Ritter⁷, Martin Rother⁷, Terence J Sabaka¹⁰, Claudia Stolle⁷, Erwan Thebault², Alan W P Thomson³, Lars Tøffner-Clausen¹, Jakub Velimsky¹¹, Pieter N Visser⁴ ¹DTU Space, Technical University of Denmark, Copenhagen, Denmark.

²IPGP, Paris, France.

³BGS, Edinburgh, United Kingdom. ⁴DEOS, Delft, The Netherlands.

Abstract: Swarm, a three-satellite constellation to study the dynamics of the Earth's magnetic field and its interactions with the Earth system, has been launched in November 2013. The objective of the Swarm mission is to provide the best ever survey of the geomagnetic field and its temporal evolution, which will bring new insights into the Earth system by improving our understanding of the Earth's interior and environment.

In order to take advantage of the unique constellation aspect of the Swarm mission, considerably advanced data analysis tools have been developed. Scientific use of data from the Swarm mission will also benefit significantly from derived products, the so-called Level-2 products, that take into account the features of the constellation. For this reason ESA has established the Swarm "Satellite Constellation Application and Research Facility" (SCARF), in the form of a consortium of several research institutions.

A number of Level-2 data products will be offered by this consortium, including various models of the core and lithospheric field, as well as of the ionospheric and magnetospheric field. In addition, derived parameters like mantle conductivity, thermospheric mass density and winds, field-aligned currents, an ionospheric plasma bubble index, the ionospheric total electron content and the dayside equatorial zonal electrical field will be calculated.

All of the derived products will be available through the Swarm Payload Data Ground Segment (PDGS), located at ESRIN, the ESA Centre for Earth Observation in Frascati, Italy. The service provided by SCARF is expected to be operational for a period of at least 5 years.

⁵ESRIN, ESA, Frascati, Italy.

⁶ETH, Zurich, Switzerland. ⁷GFZ, Potsdam, Germany.

⁸NOAA, Boulder, CO, United States.

The Level-2 Data Products

Cat-1 Products

Complex algorithms to derive Level-2 products describing specific sources of the Earth's magnetic field. Product derived by SCARF since scientific experience is required to derive these products.

Science Objective	Name	Description			
All. Needed for L1b processing	MSW_EUL_2_	Euler angles describing transformation from STR-CRF to VFM frame for satellites A, B, and C			
O1: Core Field	MCO_SHA_2_	Spherical harmonic model of the main (core) field and its temporal variation			
O2: Lithospheric Field	MLI_SHA_2_	Spherical harmonic model of the lithospheric field			
O3: Mantle Conductivity	MIN_1DM_2_	10 model of mantle conductivity			
	MIN_3DM_2_	3D model of mantle conductivity			
	MCR_1DM_2_	1D C-response maps			
	MCR_3DM_2_	3D C-response maps			
O4: External Current Systems	MMA_SHA_2_	Spherical harmonic model of the large-scale magnetospheric field and its Earth-induced counterpart			
	MIO_SHA_2_	Spherical harmonic model of the daily geomagnetic variation at middle latitudes (Sq and low latitudes (EEJ)			
Precise Orbit Determination	SP3xCOM_2_	time series of position and velocity of the center of mass of each satellite			
	ACCxCAL_2_	Accelerometer calibration parameters from the POD process			
	ACCxPOD_2_	Time series of non-gravitational accelerations estimated by POD			
O5: Magnetic Forcing of the Upper Atmosphere	ACCx_AE_2_	Time series of calibrated and pre-processed accelerometer observations and of aerodynamic accelerations from Satellite x. (x=A,B or C)			
	DNSxWND_2_	time series of neutral thermospheric density and wind speed			

Cat-2 Products

Algorithms leading to Level-2 products with minimum delay, e.g. for space weather applications. Near real-time capability. All Cat-2 products are provided in CDF format. Algorithms designed by SCARF, data processed by PDGS

Science Objective	Name	Description				
O4: External Current Systems	IBIxTMS_2F	CAT-2: Ionospheric bubble index				
	TECxTMS_2F	CAT-2: Time series of the ionospheric total electron content				
	FAC_TMS_2F	CAT-2: Time series of field-aligned currents				
	FACxTMS_2F	CAT-2: Time series of field-aligned currents				
	EEFxTMS_2_	CAT-2: Equatorial Electric Field				
<pre>Froduct name Froduct name W_TEST_MCO_SHA_2R # Input core field model fo # n_mix = 1, n_max = 20. # 51 Snap-shots derived from # per node-interval, plus of # to a spline node. # Gauss coefficient format 1 20 51 6 5 1998.00 1 0 -29576.796430 -2 1 1 -1693.946980 - 1 -1 5122.038131 2 0 -2309.793580 - 2 1 3058.875059 2 -1 -2548.622966 - 2 2 1661.519141 2 -2 -492.677420 3 0 1334.483767 3 1 -2296.508319 - 3 -1 -209.481862 3 2 1247.909872 3 -2 278.291831</pre>	CO COr 19980101T00 r peneration of m order-isog=6 ne at each node F15.6 1998.10 9575.710728 -2 1692.838403 - 5119.921493 2311.180751 - 3058.410796 2550.872138 - 1692.83484 -493.890273 1334.478280 2296.833216 - 208.913432 1247 812538 277.810544	efield model D0000_20030101T000000_0001.DBL f core field part of TDS11 data set. spline models. There are 100g-2 snap-shots e i.e. every isog-1=5 snap-slot corresponds 1998.20 1998.30 1998.21 -29573.565540 -29574.634241 -29573.565540 -29574.634241 -29573.565540 -29574.634241 -29573.565540 -29574.634241 -29573.565540 -29574.634241 -29573.565540 -29574.634241 -29573.565540 -29575 5115.670116 5117.798579 5115.670116 5117.798579 5115.670116 5117.798579 5115.670116 5117.798579 5115.670116 5107.940221 3057.463661 3057.940221 3057.463661 3057.940221 3057.463661 3057.940221 3057.463661 1334.480542 1334.490123 1334.480542 1334.490123 1334.480542 1334.490123 1344.480542 1247.625034 -2297.157839 -2297.482789 -2297.157839 -2297.482789				
3 3 690.119217 3 -3 -513.031082	689.327588 -513.626410	688.530698 687.727961 686.918823 -514.209373 -514.780763 -515.341350				
4 0 925.304661 4 1 703 136676	925.054685	924.807330 924.562662 924.320544 793.614932 793.856362 794.000111				
4 -1 279.222843	279.435146	279.650497 279.868796 280.089920				
4 2 226.556805	225.788496	225.018553 224.246895 223.473365				
• • •						

Example of ionospheric total electron content (TEC) Filename SW TEST TECATMS 2F 20081119T000000 20081119T235959 0001.DBL

Each processed GPS-Swarm satellite link is uniquely defined by one row of 18 variable arrays, provided in CDF format

Variable	Description	Unit	Example
Timestamp	Time stamp in UTC (cdfepoch)	UTC	19-Nov-2008 00:00:06
Latitude	Geographic latitude	degree	16.3335
Longitude	Geographic longitude	degree	-18.7664
Radius	Geographic radius	m	6697840.4999
GPS_Position	X-,Y-,Z-coordinates (WGS84) of the GPS satellite	m	[26162272.8499;
			-5620247.17084;
			44794.0304]
LEO_Position	X-,Y-,Z-coordinates (WGS84) of the LEO satellite	m	[6697840.4999;
			-2067805.7800;
			1883619.9080]
PRN	GPS satellite PRN	-	4
L1	GPS L1 carrier phase observation	m	-1893872.6910
L2	GPS L2 carrier phase observation	m	-1893875.5805
P1	GPS P1 code phase observation	m	20508459.0015
P2	GPS P2 code phase observation	m	20508461.8378
S1	GPS signal-to-noise ratio or raw signal strength on L1	-	300
S2	GPS signal-to-noise ratio or raw signal strength on L2	-	501
Absolute_STEC	Absolute slant TEC	TECU	8.0119
Relative_STEC	Relative slant TEC	TECU	27.5071
STEC_RMS	Root mean square error of relative slant TEC	TECU	0.3190
DCB	GPS receiver differential code bias	TECU	-14.6977
DCB_Error	Error of the GPS receiver differential code bias	TECU	0.8100

[°]ESTEC, ESA, Noordwijk, The Netherlands. ¹⁰GSFC, Greenbelt, MD, United States. ¹¹CUP, Prague, Czech Republic.

Cat-1 Processing of POD and Thermospheric Winds (performed by SCARF)

Cat-2 Data Processing (performed at PDGS)

Test of the Comprehensive Inversion Chain

Simulation of the magnetic measurements of a full Swarm Mission by generation of synthetic L1b data using sophisticated input models (of the core, lithosphere, ionosphere, magnetosphere plus induced contributions). The resulting L1b time series are subsequently inverted using the Comprehensive Inversion scheme and the estimated models are compared to the input models.

Assessment of the lithospheric field

