Exploring the Earth's Magnetic Field Using Satellites – From Ørsted to Swarm

Nils Olsen

Leverhulme Visiting Professor School of GeoSciences, Univ Edinburgh

on leave from DTU Space, Copenhagen

Outline of Talk

Introduction

- Observations
- Magnetic field sources
- 2 Tools to Separate the Various Sources
 - Magnetic field model
 - The Geomagnetic Spectrum
- Exploring the Core and Crust
 - The Dynamics of the Core
 - Crustal Magnetization

The next years: Swarm Satellite Constellation

Outline of Talk

Introduction

- Observations
- Magnetic field sources
- Tools to Separate the Various Sources
 - Magnetic field model
 - The Geomagnetic Spectrum
- Exploring the Core and Crust
 The Dynamics of the Core
 Crustal Magnetization

The next years: Swarm Satellite Constellation

Satellites for Measuring Earth's Magnetic Field **POGO** 1965-70

Satellites for Measuring Earth's Magnetic Field

Satellites for Measuring Earth's Magnetic Field

Global coverage ...

... with ground observatories

... and with 1 day of satellite data

Global coverage ...

... with ground observatories

... and with 3 days of satellite data

Sources of the Near-Earth Magnetic Field

Sources of the Near-Earth Magnetic Field

- Internal sources
 - fluid outer core: 94% electrical currents created by motion of a conducting fluid
 - crust: 3% magnetized rocks
- External sources
 - current systems in ionosphere and magnetosphere: 3% but highly time-variable! caused by solar particles, fields, and radiation

B_r at 400 km altitude

Outline of Talk

- Introduction
 - Observations
 - Magnetic field sources
- Tools to Separate the Various Sources
 - Magnetic field model
 - The Geomagnetic Spectrum
- Exploring the Core and Crust
 The Dynamics of the Core
 Crustal Magnetization

The next years: Swarm Satellite Constellation

External-Internal Field Separation

Magnetic Field Model

Assumption: no local electric currents ($\nabla \times \mathbf{B} = 0$): **B** is a potential field

$$B = -\nabla V$$

$$V = a \sum_{n=1}^{N} \sum_{m=0}^{n} \left[g_n^m \cos m\phi + h_n^m \sin m\phi \right] \left(\frac{a}{r} \right)^{n+1} P_n^m (\cos \theta)$$

$$+ a \sum_{n=1}^{N} \sum_{m=0}^{n} \left[q_n^m \cos m\phi + s_n^m \sin m\phi \right] \left(\frac{r}{a} \right)^n P_n^m (\cos \theta)$$

 r, θ, ϕ are spherical coordinates g_n^m, h_n^m and q_n^m, s_n^m describe internal, resp. external magnetic field contributions

CHAOS-4

A Geomagnetic Model Determined from 14 Years of Data

- Goal: Describe magnetic field with
 - high spatial resolution
 - determine small scale structure of core and crustal field
 - high temporal resolution
 - determine rapid core field changes

CHAOS-4

A Geomagnetic Model Determined from 14 Years of Data

- Goal: Describe magnetic field with
 - high spatial resolution
 - determine small scale structure of core and crustal field
 - high temporal resolution
 - determine rapid core field changes

Method:

- 14 years of data from CHAMP, Ørsted and SAC-C satellites and from 150 ground observatories
- Model parameterization:
 - static field (core and crust) up to $n \leq 100$
 - time variation of core field $(n \le 20)$ described by splines with 6 month knot spacing between 1997.0 and 2013.5
 - Co-estimation of external field and instrument calibration

CHAOS-4

A Geomagnetic Model Determined from 14 Years of Data

- Goal: Describe magnetic field with
 - high spatial resolution
 - determine small scale structure of core and crustal field
 - high temporal resolution
 - determine rapid core field changes

Method:

- 14 years of data from CHAMP, Ørsted and SAC-C satellites and from 150 ground observatories
- Model parameterization:
 - static field (core and crust) up to $n \leq 100$
 - time variation of core field (n ≤ 20) described by splines with 6 month knot spacing between 1997.0 and 2013.5
 - Co-estimation of external field and instrument calibration
- About 25.000 model parameters estimated from 1.5 mio. observations

The Geomagnetic Spectrum

$$R_n = \langle \mathbf{B}_n \cdot \mathbf{B}_n \rangle = (n+1) \sum_{m=0}^n \left[\left(g_n^m \right)^2 + \left(h_n^m \right)^2 \right]$$

mean square magnetic field at Earths surface (r = a)due to contributions with horizontal wavelength $\lambda_n = \frac{2\pi a}{n}$

The Geomagnetic Spectrum

$$R_n = \langle \mathbf{B}_n \cdot \mathbf{B}_n \rangle = (n+1) \sum_{m=0}^n \left[\left(g_n^m \right)^2 + \left(h_n^m \right)^2 \right]$$

Model of core and crustal spectrum

Outline of Talk

- Introduction
 - Observations
 - Magnetic field sources
- Tools to Separate the Various Sources
 - Magnetic field model
 - The Geomagnetic Spectrum
- Exploring the Core and Crust
 The Dynamics of the Core
 Crustal Magnetization

The next years: Swarm Satellite Constellation

Magnetic Field Acceleration

Radial component, $\partial^2 B_r / \partial t^2$, at Earth's surface

Radial component B_r

Radial component at Earth's surface ...

... and at 3000 km depth

			nT			
-600000	-400000	-200000	0	200000	400000	600000

Fluid Flow at Top of Core

Induction equation at top of core:

$$\dot{\mathbf{B}} = \underbrace{\nabla \times (\mathbf{v} \times \mathbf{B})}_{\text{advection}} + \underbrace{\eta \nabla^2 \mathbf{B}}_{\text{dissipation}}$$

B is the magnetic field vector **v** is the velocity vector (flow) $\eta = 1/(\mu_0 \sigma) \approx 1.6 \text{ m}^2/\text{s}$ is the magnetic diffusivity of the core $\sigma \approx 5 \cdot 10^5 \text{ S/m}$ is electrical conductivity

Fluid Flow at Top of Core

Induction equation at top of core:

$$\dot{\mathbf{B}} =
abla imes (\mathbf{v} imes \mathbf{B})$$

Induction equation in "frozen flux approximation"

B is the magnetic field vector **v** is the velocity vector (flow)

Fluid Flow at Top of Core

Induction equation at top of core:

$$\dot{\mathbf{B}} =
abla imes (\mathbf{v} imes \mathbf{B})$$

Induction equation in "frozen flux approximation"

B is the magnetic field vector **v** is the velocity vector (flow)

Determination of \mathbf{v} from known \mathbf{B} and \mathbf{B}

The Dynamics of the Core

Fluid Flow at Top of Core

Mean horizontal velocity for 1999-2010

Assumption: tangentially geostrophic flow (balance between pressure gradient, Coriolis and buoyancy forces)

Magnetic Field due to Magnetized Rocks

- Crustal field is caused by magnetized rocks in Earth's crust at depths below Curie temperature.
- Much stronger crustal field over continents, due to thicker crust

Outline of Talk

- Introduction
 - Observations
 - Magnetic field sources
- Tools to Separate the Various Sources
 - Magnetic field model
 - The Geomagnetic Spectrum
- Exploring the Core and Crust
 The Dynamics of the Core
 Crustal Magnetization

The next years: Swarm Satellite Constellation

The Swarm Concept

- 2002: proposed to ESA
- 2004: selected by ESA
- 2013: launched on 22 Nov
- Constellation of 3 satellites
 - two side-by-side at low altitude
 - third at higher altitude
- Each Swarm satellite measures
 - magnetic field vector B (< 1 ppm absolute accuracy)
 - electric field E and plasma parameters
 - acceleration (neutral wind, neutral density)

Pair of Swarm Satellites Measures Magnetic Field Gradient

Improvement of Crustal Field Model

POGO and Magsat ...
 n ≤ 40, resolution: 1000 km

B_r at ground

Improvement of Crustal Field Model

- POGO and Magsat ... $n \leq 40$, resolution: 1000 km
- ... with present satellites Ørsted and CHAMP ...
 - $n \leq$ 80, resolution: 500 km

B_r at ground

Improvement of Crustal Field Model

- POGO and Magsat ...
 n ≤ 40, resolution: 1000 km
- ... with present satellites Ørsted and CHAMP ...
 - $n \leq$ 80, resolution: 500 km
- ... and with Swarm
 - $n \leq$ 150, resolution: 270 km

B_r at ground

Swarm Status

- Commissioning phase ended this week
- First data provided to the Cal-Val Team
- Swarm session at EGU, Vienna, April 2014
- 3rd International *Swarm* Science Meeting, 19-20 June in Copenhagen

Altitude evolution of *Swarm* showing various orbital manoeuvres

Combined analysis of 3 months of data from all 3 *Swarm* satellites Field model ($n \le 40$) for epoch 2014.0, co-estimation of instrument parameters

Comparison with CHAOS-4 extrapolated in time to epoch 2014.0

Spectrum: Good agreement (difference smaller than signal)

Combined analysis of 3 months of data from all 3 *Swarm* satellites Field model ($n \le 40$) for epoch 2014.0, co-estimation of instrument parameters

Comparison with CHAOS-4 extrapolated in time to epoch 2014.0

Crustal field difference B_r (n = 15 - 40): Good agreement

Combined analysis of 3 months of data from all 3 *Swarm* satellites Field model ($n \le 40$) for epoch 2014.0, co-estimation of instrument parameters

Comparison with CHAOS-4 extrapolated in time to epoch 2014.0

Core field difference ($n \le 14$) in 2014.0: CHAOS-4 extrapolation error

Combined analysis of 3 months of data from all 3 *Swarm* satellites Field model ($n \le 40$) for epoch 2014.0, co-estimation of instrument parameters Core field difference ($n \le 14$) wrt a combined Ørsted, CHAMP and *Swarm* model (CHAOS-4+)

Earth and other planets

Earth and other planets

Earth and other planets

Earth and other planets

- Earth
 - core and crustal field
- Mars and Moon
 - presently only crustal field
- Jupiter and Mercury
 - only core field

Earth and other planets

- Earth
 - core and crustal field
- Mars and Moon
 - presently only crustal field
- Jupiter and Mercury
 - only core field

