
MT RAYOR Manual

A raytracing system for X–ray telescopes

Version 3.5

Niels J. Westergaard

National Space Institute, Technical University of Denmark

August 24, 2011

54.5 55.0 55.5 56.0 56.5

1.00

1.01

1.02

1.03

10+4

Radius [mm]

Z
 fr

om
 fo

ca
l p

la
ne

 [m
m

]

Phi: 3.07625 radPhi: 3.07625 rad

1

uhuru.space.dtu.dk:/r4/njw/Htex/mt rayor man

Upper front page figure: Illustration of the Wolter-1 optical system.

Lower front page figure: Illustration of the path of a ray in a conical approximation telescope.

2

Contents

1 Introduction 7

2 Downloading Yorick and MT RAYOR 7

3 Basic concepts in MT RAYOR 8

4 Mirror geometry 9

5 Software manual 10

5.1 Running overview . 10

5.2 Function descriptions . 10

5.2.1 mt analysis . 10

5.2.2 mt create om abci . 11

5.2.3 mt def photons . 11

5.2.4 mt det add bkg . 12

5.2.5 mt det add dxb bkg . 12

5.2.6 mt det add instr bkg . 12

5.2.7 mt detector . 12

5.2.8 mt det image . 12

5.2.9 mt drayplot . 13

5.2.10 mt dxb2skydef . 13

5.2.11 mt eff area photons . 14

5.2.12 mt eff area quick . 14

5.2.13 mt fake scatter data . 15

5.2.14 mt funcs . 15

5.2.15 mt get mirror eff factors . 16

5.2.16 mt get rcoef . 16

5.2.17 mt load . 16

5.2.18 mt mirdiag . 17

3

5.2.19 mt mirplot . 17

5.2.20 mt mk mdeform file . 17

5.2.21 mt photpr . 17

5.2.22 mt pre def photons . 17

5.2.23 mt propagate . 18

5.2.24 mt qimage . 18

5.2.25 mt rayplot . 18

5.2.26 mt raytrace module . 19

5.2.27 mt reflplot . 19

5.2.28 mt run . 19

5.2.29 mt save . 20

5.2.30 mt scatter data file . 22

5.2.31 mt sel scatter . 23

5.2.32 mt setup system . 23

5.2.33 mt spoke blocking . 23

5.2.34 mt spoke read . 23

5.2.35 mt skyima2skyspec . 24

5.2.36 mt skyspec2skydef . 24

5.2.37 mt upd om coating . 24

6 Data organization 24

6.1 Content of memory . 24

6.2 Telescope system definition files . 25

6.3 Optical module description files . 26

6.4 Mirror thickness file . 27

6.5 Coating tables . 27

6.6 Scatter data files . 27

6.7 Spoke definition files . 28

6.8 Deformation description files . 29

4

6.9 Photon save files . 30

6.10 Photon image files . 30

6.11 Photon flux files . 30

6.12 Source list files . 31

6.13 Sky definition files . 31

7 Cookbook 31

7.1 Download and installation . 32

7.2 The GRI system with a single optical module . 32

7.2.1 Set up the system definition file . 32

7.2.2 Create the optical module file . 33

7.2.3 Running a case . 34

7.2.4 Display the result . 34

7.2.5 Introducing scattering . 35

7.3 Wolter I raytracing . 36

7.4 Conical approximation raytracing . 37

8 Point source simulation 38

9 Simulation with source list as input 38

10 Simulation with sky image as input 38

11 Observation simulation 39

11.1 Adding background . 39

11.2 The detector . 40

12 A simulation example 41

12.1 Event list and analysis . 42

13 Testing the optics in the lab 43

14 Appendix: Geometrical formulae 43

5

14.1 Parabolic Mirrors . 43

14.2 Wolter I optics . 44

14.3 Conical approximations . 44

14.4 Surface perturbations . 45

15 Appendix: Expressions for raytracing 45

15.1 The surface normal . 46

16 Appendix: Word list 47

17 Appendix: External variables 47

18 Appendix: Installing Yorick 49

19 Appendix: The .scm format 50

20 Appendix: History of updates 51

6

1 Introduction

A raytracing system for the analysis of grazing incidence X–ray telescopes has been developed at the
Technical University of Denmark, National Space Institute. It is based on the Yorick interpreted language
(David H. Munro, University of California, Lawrence Livermore National Laboratory, 1994) and the FITS
(Wells et al., 1981, A&A Suppl. 44, 363, and Harten et al., 1988, A&A Suppl. 73, 365, for the table
extension) data storage standard.

The X–ray telescopes that can be analyzed are of the nested mirror type based on ideal geometry but
including realistic scattering and surface perturbations. The mirror surface reflecting properties are allowed
to change from mirror to mirror and also within the mirror shells themselves.

Functions are also supplied for the design of a particular telescope by defining focal length, largest and
smallest mirror radii, etc.

Both single reflection and double reflection (most common type) telescopes are supported. Axial symmetry
is assumed apart from mirror surface perturbations and the support structure (spokes).

The raytracing is done by defining a number of photons of a given energy at the aperture of the first
optical module. Both celestial sources (at infinity) and laboratory sources at a finite distance can be
simulated. Then each photon is followed through the optical system while tagging with point of mirror
impact, grazing angle, outgoing direction (including scattering), and reflection coefficient. Finally the
photons are propagated to an interception plane, usually the focal plane.

Better investigations of X-ray sourcescan be obtained by additional photon flux table files (as a function
of energy) where the energy for each photon is sampled from such a distribution. Functions for using sky
images or laboratory source models as input are also supplied. This is useful for modelling of diffuse or
extended sources such as supernova remnants.

For a complete observation simulation the detector properties can be taken into account: pixellation,
redistribution matrix, and quantum efficiency. The sky coordinate system is reproduced in the resulting
detector images which makes the comparison with the original observations and other simulations easier.

2 Downloading Yorick and MT RAYOR

The package comes in a file: mt rayor-3.5.tar, that contains all the necessary source files (apart from those
already included in the Yorick distribution, see the appendix section 18, page 49).

Assuming that Yorick has been installed under directory /whatever/yorick the unpacking of mt rayor-
3.5.tar should happen there. Then the specific mt rayor functions are found in ’mt rayor-3.5.i’ which is
created locally.

Furthermore a subdirectory mraytrace is created with a number of ’starter files’ with template files for
system definition etc., e.g. the optical module defining files, the scattering data file, the photon files, and
the image files. This subdirectory is supposed to be the working directory.

The functions of MT RAYOR are run directly under Yorick which implies that an extensive set of ad-
ditional functions for further analysis and plotting of the raytracing results are available. Such general
collections of functions are: ’basic.i’, ’datafit.i’, ’euler.i’, ’idlx.i’, ’image.i’, ’kfits.i’, ’mfits.i’, ’mcomplex.i’,
’plot.i’, and ’scom.i’. The filename extension ’.i’ is commonly used for yorick files, any filename will do
but this is practical.

7

Information about these collection can be obtained by looking into the files but also under yorick by the
very useful ’help’ command. Generally
> help,funcname

will provide help for function ’funcname’. For the above mentioned packages there is a similar functionality
when you add the three letters: doc to the call e.g.:
> help,imagedoc

will give you an overview of the extra image display possibilities supplied in ’image.i’.

3 Basic concepts in MT RAYOR

A mirror section of the telescope where the photons are meant to undergo a single reflection is here
called an optical module. It is defined in a FITS table listing all the mirror radii and lengths (rotational
symmetry is assumed) as well as other information. In the present framework a telescope can be composed
of one or two optical modules. In the former case there will only be a single reflection concentrating the
X-ray beam. In the latter case there will be two reflections required for getting true imaging.

The goal has been to define a system that is able to handle a variety of X-ray telescopes of thin foil design.
Such a telescope can consist of a number of optical modules each defined in its own coordinate system (as
long as the z-axis is the boresight) with a reference plane placed at z = 0. In the telescope description each
reference plane will have a (positive) z-value and the photons will be moving in the negative z-direction.

It has not been possible to build a genuine ’Lego’-system where modules can be installed in a simple way
because of the demand that the exit slits of the first module must match the entrance slits of the second
module for maximal telescope throughput. Hence the first optical module is called the master module
and the second one, the slave module.

With version 3.5 these types of systems can be handled: A parabolic or conical approximation single
reflection concentrator such a the one proposed for the GRI (Gamma Ray Imager) of the ESA ’Cosmic
Vision’ scheme, and a Wolter I conical approximation system e.g. like the one proposed for NuStar, the
NASA SMEX mission, and the SXT on the Indian Astrosat. The proposed ESA mission Athena (formerly
IXO) is also designed with such an X-ray telescope.

A telescope system is defined by parameters given in an ASCII text file conveniently named system name.scm

where name characterizes the system and the postfix scm indicates that it is formatted as an .scm-type
file (see section 19). All basic parameters are given there as well as the names of the files that describe in
detail the optical modules.

A FITS binary table is used to describe an optical module. Basic parameters are given as keywords in
the header, and in the table each row corresponds to a mirror shell. There are columns defining the radii
and z-coordinates at entrance and exit as well as the openings of the baffle-system (if any).

There are subroutines supplied in the package for the production of the Optical Module Description Files.
The names of those subroutines are given in the System Definition File. Some optical modules have
the same mirror length for all mirrors and some have a mirror length that depends on the radius. This
feature, for instance, must be defined in the appropriate subroutine and the parameter ’Mirror length’
has no meaning which is signalled by giving it at value of -999.0.

The mirrors will be coated in some way and the derived and measured reflection and scattering properties
for a given kind of coating is stored in a FITS binary table file that holds both the coefficent of reflection and
an array with the scattering distribution for an appropriate number of energy and incoming grazing angle
values. There are functions included to build such files from ASCII table input; for further information

8

see section 6.6.

In the physical world no mirror has the ideal shape. The deviations, if known, can be included in the
raytracing by deformation description files (see section 6.8) with a deformation map for each mirror in
azimuth and z.

Once the Optical Module Description files have been produced as well as the scattering distributions the
actual raytracing can start.

4 Mirror geometry

The basic coordinate system for a telescope system has its origin in the focal plane of the telescope and
the Z axis along the telescope axis of symmetry. The photons will have direction vectors (small, small,
close to -1.0).

The unit of length is consistently mm.

In the ideal case the formula r = f(z) is assumed to describe the mirror shell reflecting surface. With
df/dz = f ′(z) then the normal vector in the (r, z) system is (−1, f ′(z)). When mirror deformations are
considered as well then the radius is also a function of the azimuth angle: r = f(z, phi) and the derivation
of the normal vector is presented in section 15.1.

9

5 Software manual

5.1 Running overview

The basic parameters of the telescope system are defined in a special text file that is used for setting up.

The raytracing process starts with a characterization of all the photons that impinge on the telescope
entrance aperture with a given energy and direction but a random position uniformly distributed. The
photon array is then sorted according to radius because the scattering properties most likely change with
mirror number.

The definition of the first optical module is then loaded into memory and the photons are propagated
through that module one by one. For each photon the appropriate mirror number is found and the
connected scatter data file is loaded into memory if it does not already reside there based on the coating
type. All photons that experience a single reflection are tagged with the actual coefficient of reflection
that depends both on energy and grazing angle. The photons that make it through the exit aperture get
assigned a status value of zero, the others get a (positive) status value according to where they miss the
proper path.

When all photons are dealt with, the second optical module is loaded if it has been included in the telescope
setup. All photons with zero status value are then propagated through the module in an analoguous fashion
to the first module.

Finally all succesful photons are propagated to the focal plane.

At this point the raytracing results can be derived such as PSF and effective area. In order to make
a full investigation over a range of energies and off-axis angle a raytracing run must be done for each
combination although there are shortcuts if the scattering is energy independent.

A pixellated detector can be defined with quantum efficiency and redistribution matrix for the simulation
of an observation. The photons that are accepted in the detector are saved as events with proper tagging
(energy and pixel) for subsequent analysis.

Saving the entire session, writing the focal plane image to a FITS file, or saving all photon information
to a FITS photon file can also be done.

5.2 Function descriptions

Here follows a description of each of the mt rayor functions. In Yorick the command: help, function name
will cause a display of basic information about the function, including arguments and keywords.

5.2.1 mt analysis

Subroutine: mt analysis[, photon file],geom=, frac=
hpd = mt analysis([, photon file],geom=, frac=

Reads the photon file or works on the photons stored in memory and produces a value for the HPD
(Half Power Diameter). It finds the average position while excluding photons placed too far away and
calculates the HPD around that point. For single reflection telescope this has only meaning for an on-axis

10

observation. If the photon file is not given, the contents of the memory is used.

If called as a subroutine the results will be printed to the screen else the HPD value in mm will be returned.

5.2.2 mt create om abci

Subroutine: mt create om par1, filename=

Subroutine: mt create om par2, filename=

Subroutine: mt create om hyp2, filename=

Subroutine: mt create om con2, filename=

Subroutine: mt create om con3, filename=

Subroutine: mt create om con4, filename=

Subroutine: mt create om con5, filename=

Creates an optical module file with the FITS table for a mirror system. The filename keyword defines the
output file. If it is not given then the output will be placed in a file by name of ’om abc nnn.fits’ where
nnn is a serial number updated relative to the already existing files of that kind.

The input is defined by running mt setup system that consequently must be run before running mt create om abci.

mt create om par1 creates a stand-alone parabolic optical module.

mt create om par2 followed by mt create om hyp2 creates optical modules for a Wolter I system.
No gap between the two modules is foreseen.

mt create om con2 followed by mt create om con3 creates optical modules for a conical approximation to
a Wolter I system.
No gap between the two modules is foreseen and the reference plane is the same as the entrance aperture
plane.

mt create om con4 followed by mt create om con5 creates optical modules for a conical approximation to
a Wolter I system with a gap between the optical modules. The reference plane is not necessarily at
the entrance aperture of the modules, the keywords ’z1 setup’ and ’z2 setup’ in the system definition file
define the mirror position relative to the reference plane.

5.2.3 mt def photons

Subroutine: mt def photons(fraper, energy or file, src offaxis, src azim, dphot=, cont=)

defines the photons at the system aperture. The first argument ’fraper’ (for Front Aperture) must be a
two or four element array, where the two first elements are the inner and out radii. If a our element array
is used then the two last elements are the limiting azimuth angles of the front aperture in radians. The
surface density of photons is given by the keyword ’dphot’ (unit: mm−2, default value is 1.0). The energy
is to be given in keV, the angle away from on-axis, src offaxis in arcmin, and the azimuth angle, src azim,
in degrees.

If the argument ’energy or file’ is not given as a scalar number but as a string, it is assumed that it is a
filename of a binary table FITS file where the first extension has (at least) three columns: ENERG LO,
ENERG HI, and PHOTFLUX, where the units are expected as ’keV’, ’keV’, and ’ph cm−2s−1keV−1’. The

11

name of the extension (keyword EXTNAME) must be PHOTON FLUX.

An array (Phs) of the struct s Ray is defined and initiated with values according to the function arguments
unless the keyword ’cont’ is set in which case Phs is expanded with the new photons. The photon positions
are chosen at random between the radius limits with a uniform density. Afterwards they are sorted with
increasing radii which reduces the need for updating scattering properties when starting a new photon.

5.2.4 mt det add bkg

Subroutine: mt det add bkg, instr=, dxb=, dxb adjust=

Add both instrument and diffuse background to current event list (Evlist).

5.2.5 mt det add dxb bkg

Subroutine: mt det add dxb bkg, filename, adjust=

Add diffuse background to current event list (Evlist).

5.2.6 mt det add instr bkg

Subroutine: mt det add instr bkg, filename

Add detector background to current event list (Evlist) as described in the .scm format file ’filename’.

5.2.7 mt detector

Subroutine: mt detector, detector descr file, init=, cont=, bkglvl=, flag=

loads the detector description data from the ’detector descr file’ and forms an event array ’Evlist’ from the
successful photons in ’Phs’ i.e. those with status==0 and accepted by the random coefficient of reflection
test.1 The detector descr file argument is only required for the first call or when a change in the file has
occurred.

The keyword ’cont’ will cause the events to be appended to the already existing event array, whereas ’init’
will cause a resetting and a new start. If the keyword ’bkglvl’ is set then extra events will be added with
this number per detector pixel per keV. The keyword ’flag’ is used to update the event tag ’flag’ except
for the background that allways gets a zero flag value.

5.2.8 mt det image

Function: im = mt det image(emin=, emax=, outname=, bkglvl=)

returns the detector image in the energy range given by ’emin’ and ’emax’. The default value for these is
the minimum of E MIN and maximum of E MAX resp. as given in the detector description file. If keyword

1Accepted if Rcoef is greater than a random number between zero and one drawn from a uniform distribution.

12

’outname’ is given then an image in FITS format is written to that name. Furthermore a background is
added is keyword ’bkglvl’ has a finite value (per pixel per keV). Note that a background can be defined
in either of ’mt detector’ and ’mt det image’.

5.2.9 mt drayplot

Subroutine: mt drayplot, photon index, over=

Plot the path of the chosen photon through both optical modules.

If the keyword ’over’ has been set then the path is added to the current display (overplot).

54.5 55.0 55.5 56.0 56.5

1.00

1.01

1.02

1.03

10+4

Radius [mm]

Z
 fr

om
 fo

ca
l p

la
ne

 [m
m

]

Phi: 3.07625 radPhi: 3.07625 rad

Figure 1: A result of mt drayplot for a nominal passage (green lines) through a telescope. The dashed
lines make the nominal mirror and the black curve shows the surface when deformations are taken into
account (a rather extreme case is seen in one of the other mirrors). The red lines illustrate the upper
baffles and the blue lines illustrate the lower baffles.

5.2.10 mt dxb2skydef

Subroutine: mt dxb2skydef, skydefname, dol dxbflux, wfov, \
n, exposure=, mission=, instrume=

Produces a skydefinition file for DXB determination by arranging sources in a regular mesh around

13

54.5 55.0 55.5 56.0 56.5

1.00

1.01

1.02

1.03

10+4

Radius [mm]

Z
 fr

om
 fo

ca
l p

la
ne

 [m
m

]
Phi: 4.60604 radPhi: 4.60604 rad

?27 ?28 ?29 ?30

x0= 5.6??E+1

?50

?55

?60

?65

y0+?

y0= 1.03??E+4
Radius [mm]

Z
 fr

om
 fo

ca
l p

la
ne

 [m
m

]

Phi: 4.60604 radPhi: 4.60604 rad

Figure 2: Left panel: The mirror deformation can give rise to a missed reflection in the second optical
module even for on-axis rays. Right panel: A zoom of the reflection region detailing the mirror surface.
(In Yorick you can easily zoom by left-clicking in the plot window and drag to the center.)

(RA,Dec) = (180,0).

5.2.11 mt eff area photons

Function: eff area = mt eff area photons(earr=, samp=, outfile=)

returns the effective area (in mm2) for a standard array of energies as given by the scatter files, or, if
keyword ’earr’ is supplied with an array of energies, for those energies. The photons in memory are used
for this irrespective of their original energy. Thus this function is not valid if the scattering properties
change with energy. In this case the computation must be split up into small energy intervals with a
raytracing run followed a call of this function for each interval.

Only the photons with ’status’ == 0 are used.

When the keyword ’outfile’ has been set, an output FITS file with the effective area table will be written.
If ’outfile’ is a string it will become the name of the files else the result will be written to a file by name
of eff area nnnn.fits where nnnn is a serial number.

Since this process it quite time consuming a sampling keyword ’samp’ has been introduced. If used, one
photon out of ’samp’ will be used in the calculation.

5.2.12 mt eff area quick

Function: eff area = mt eff area quick(earr=, outfile=)

returns the on-axis effective area (in mm2) for a standard array of energies, or, if keyword ’earr’ is
supplied with an array of energies, for those energies. The geometrical area of the master optical module
is multiplied with the reflection coefficient for the average grazing angle for the reflection or for both

14

reflections if two optical modules exist.

The effect of the obscuration by the spokes is included in the calculation if the function ’mt get mirror eff factors’
has been run beforehand.

When the keyword ’outfile’ has been set, an output FITS file with the effective area table will be written.
If ’outfile’ is a string it will become the name of the files else the result will be written to a file by name
of eff area nnnn.fits where nnnn is a serial number.

5.2.13 mt fake scatter data

Subroutine: mt fake scatter data, filename, fwhm=, angle max=, ener max=, coat= \
ener min=, n ener=, n angles=, dist angle max=

Produces a scatter file as defined in ’filename’ in the correct format with ad-hoc reflection coefficients and a
gaussian scattering distribution the width of which can be chosen with the ’fwhm’ keyword (unit: radian).
Similarly the maximal angle (in radians) and energy (in keV) can be defined. The coating designation
can be given by keyword ’coat’ (defaults to 1 (one)).

5.2.14 mt funcs

This is a number of functions to support the raytracing. Certain variables must be defined externally:
Dcoef, Fcoef, Acoef, and Zfocus.

Function: rpar(z,phi)

returns the radius of the parabolic mirror surface including mirror deformation, if requested (assumes that
Dcoef and Zfocus have been defined).

Function: rhyp(z,phi)

returns the radius of the hyperbolic mirror surface including mirror deformation, if requested (assumes
that Fcoef, Acoef, and Zfocus have been defined).

Function: rcon(z,phi)

returns the radius of the conical mirror surface including mirror deformation, if requested (assumes that
Mirror angle and R1 mirror have been defined).

Function mdist(funcname, C)

returns the distance to the mirror (defined by ’funcname’ and the related external variables) from the
point in space defined by ’C’. Returns a positive value if inside mirror, negative otherwise.

Function impact(funcname, z1, z2, S, R)

calculates the interaction point of the ray defined by starting position S and direction vector R. The mirror
is to be found between z1 and z2 (z1 < z2). A vector of four elements: position plus final distance is
returned.

Function deriv(funcname, x, phi)

returns the partial derivative of the function in x by setting dx = 1.

15

Function deriv2(funcname, x, phi)

returns the partial derivative of the function in phi by setting dphi = 0.01745 (corresponding to 1◦)

Function normal vector(funcname, x, phi)

returns a normalized normal vector the the (almost) axially symmetric surface described by ’funcname’.

Function spec reflect(R, N, Q)

Calculates the specularly reflected ray as Q when the incoming ray is R and the surface normal is N. The
returned value is the grazing angle in radians.

Function scat reflect(R, N, scat angle, Q)

Calculates the scattered reflected ray as Q when the incoming ray is R and the surface normal is N. The
scattering angle scat angle [rad] is measured from the specular reflection with negative values towards the
reflecting surface and with positive values away from the reflecting surface. The returned value is the
grazing angle in radians.

5.2.15 mt get mirror eff factors

Subroutine: mt get mirror eff factors

(takes no arguments) calculates the efficiency factors for each mirror shell by taking the reduction due to
spokes into consideration. The external variable ’Mirror eff factors’ (an array with as many elements as
there are mirror shells) is evaluated from the spoke definition files. If present this array is used by the
’mt eff area quick’ function.

5.2.16 mt get rcoef

Function: coef = mt get rcoef(energy, angle)

interpolates in the currently loaded scatter table to return the coefficient of reflection (energy in keV and
angle in radians).

5.2.17 mt load

Subroutine: mt load, omfile=, scatfile=, mdeffile=, makelog=, chat=

Loads the necessary arrays for an optical module, a scatter file, and/or a mirror deformation file into
memory as external variables.

If the keyword ’omfile’ is a string with an optical module file name then the external variables for the
module are filled.

If the keyword ’scatfile’ is a string with a scatter file name then the external variables for the scatter
information are filled.

16

If the keyword ’mdeffile’ is a string with a mirror deformation description file name then the ’Mir-
ror deform arr’ variable is updated.

5.2.18 mt mirdiag

Subroutine: mt mirdiag, rr=, zr=, gl=, z offset=, over=, phi=

plots a diagram of the mirror configuration with nominal mirror surface and the actual surface if mirror
deformations have been defined. Red and blue lines for the baffles are added as well.

Keyword
rr Two element array. Plotting range in radius.
zr Two element array. Plotting range in z.
gl Add guidelines.
z offset Off set of plotted z values.
over Do overplotting.
phi Azimuth value (radians), defaults to zero.

5.2.19 mt mirplot

Subroutine: mt mirplot, mirror number, phi, yr=, nz=

plots the mirror surface as a function of z.

The keyword ’yr’ (a two-element array) can be used to set the y plotting range.

The keyword ’nz’ can be used to set the number of z-values for the plot.

5.2.20 mt mk mdeform file

Subroutine: mt mk mdeform file, filename, mode, param, naz=, nz=

Produces a FITS file with mirror deformations for an example with a parabolic deformation in z (no
azimuth dependence). This routine is quite limited and real mirror deformations must be handled outside
this package.

5.2.21 mt photpr

Subroutine: mt photpr, iphot

prints the contents of the external struct ’Phs’ for photon number ’iphot’ in a nice way on the terminal.

5.2.22 mt pre def photons

Subroutine: mt pre def photons(fraper, energy or file, src offaxis, src azim, dphot=, cont=)

is called by ’mt run’ to define the photons to be raytraced. The first argument ’fraper’ (for Front Aperture)

17

must be a two or four element array, where the two first elements are the inner and out radii. If a our
element array is used then the two last elements are the limiting azimuth angles of the front aperture in
radians. The surface density of photons is given by the keyword ’dphot’ (unit: mm−2, default value is
1.0). The energy is to be given in keV, the angle for the source position away from on-axis, src offaxis in
arcmin, and the source azimuth angle, src azim, in degrees.

If the third argument ’energy or file’ is a scalar number or the name of a photon flux file then the control
is immediately given to ’mt def photons’ (see page 11 where the other arguments are explained).

’energy or file’ can be the name of a sky definition file (SDF) that can define multiple celestial sources in
the FOV. ’mt def photons’ will be called for each of these sources to build up a complete array with input
photons. See section 8, 9, and 10 for the required file format.

5.2.23 mt propagate

Function: mt propagate, new z value

places all photons in the external variable ’Phs’ at the new z value (measured from the focal plane). Useful
if e.g. the detector is not placed in the focal plane as when doing laboratory experiments.

5.2.24 mt qimage

Subroutine: mt qimage, dz, size=, dim=, cen=, bsel=, lg=, win=, pal=
Function: image = mt qimage(dz, size=, dim=, cen=, bsel=)

If called as a subroutine it will show an image (i.e. the 2D distribution of the photons) in the plane
perpendicular to the optical axis at the z-value ’dz’ (that defaults to zero, i.e. in the focal plane). If called
as a function, the image will be returned. The input data are the status==0 photons in memory (external
variable ’Phs’). Keyword size is a scalar with requested image size in mm, dim is an integer scalar with
requested image size in pixels, and cen can be zero for centering on (0,0), a non-zero scalar to center on
the average position, or a 2-element array with coordinates of the center of the requested image.

The keyword ’bsel’ can be used for a selection on the ’bounce’ flag. If ’rcoef’ is set, then the photons will
be weighted with the reflection coefficients for a better representation of the focal plane image.

When called as a subroutine the keywords ’lg’, ’win’, and ’pal’ can tell if the image is wanted in a
logarithmic colorscale, what window pane is requested, and, finally, what palette is to be used. The
general purpose ’disp’ subroutine is used to present the image.

5.2.25 mt rayplot

Subroutine: mt rayplot, index of photon, module number, over=, z offset=, extend=

Plot the path of the chosen photon through an optical module. Keyword ’over’ will cause an overplotting,
’z offset’ is an additive coordinate change in Z, ’extend’ will show more of the photon path at entrance
(extend > 0) or at exit (extend < 0).

18

5.2.26 mt raytrace module

Subroutine: mt raytrace module, no scatter=, no mdeform=, chat=

Follows each photon in the current ’Phs’ array through the mirror module previously loaded with ’mt load’.
The photon position is updated to where the reflection (if any) happens. The struct member ’rcoef’ is
multiplied by the reflection coefficient for the energy and incidence grazing angle. The struct member
’status’ is changed to a positive value if the photon misses the entrance slit, the exit slit, or the mirror.

The status value description:

1 stopped by a spoke at entrance
2 stopped at entrance by baffle slot inner edge
3 stopped at entrance by baffle slot outer edge
4 hit neighboring mirror edge
5 hit mirror edge
6 into backside of neighboring mirror
7 second reflection on the same mirror
8 exits module ”behind” the mirror
9 stopped at exit by baffle slot inner edge
10 stopped at exit by baffle slot outer edge
11 stopped by a spoke at exit

When the blocking happens in the second optical module 100 will be added to the above values.

The struct member ’bounce’ contains a binary code for occurrences of bounces (or reflections) as:

0 no reflection happend
1 reflection only in first module
2 reflection only in second module
3 reflection in both modules

It updates the ’Phs’ array that contains the information described in section 6.1 (page 24).

5.2.27 mt reflplot

Subroutine: mt reflplot

Makes a plot of the currently loaded reflection coefficients. Two examples from preliminary NuSTAR
scatter files are shown in figure 3 as a function of energy for all angles present in the scatter file.

5.2.28 mt run

Subroutine: mt run, energy or file, src offaxis, src azim, dphot=, samp=, \
no scatter=, no mdeform=, chat=, flag=, fraper=, \
labxoff=, labyoff=

19

 0 50
0.0

0.5

1.0

1.5

../finns_data_101008/nuscat101008_01.fits

Energy [keV]

R
 c

oe
f

Coating type : 1

Min. angle: 3.49e−05 rad = 2.0 mdeg

Max. angle: 3.18e−03 rad = 182.0 mdeg

 0 50
0.0

0.5

1.0

1.5

../finns_data_101008/nuscat101008_10.fits

Energy [keV]

R
 c

oe
f

Coating type : 10

Min. angle: 2.69e−03 rad = 154.0 mdeg

Max. angle: 6.18e−03 rad = 354.0 mdeg

Figure 3: Left panel: Reflection coefficients for the coating of the innermost NuSTAR (preliminary)
mirrors. Right panel: Same but for outermost mirrors.

runs a raytracing session for a defined energy and source position (’src offaxis’ (arcmin) and ’src azim’(degrees)).

The first argument is either a scalar number that defines the energy (in keV) of the photons or a scalar
string giving the filename of a photon flux file (section 6.11), a source list file (section 6.12), a sky definition
file (section 6.13), or a laboratory source defining file.

The photon density at the telescope i.e. photons per mm2 can be defined by the keyword ’dphot’ (default
is 1.0). Only used if a specific energy is given (’energy or file is a scalar number).

Scattering can de unselected by setting the keyword ’no scatter’ and similarly mirror deformation can be
avoided by setting the keyword ’no mdeform’.

Setting the keyword ’chat’ to a value larger than 0 will cause extra output on the screen with running
information. The keyword ’flag’ will cause the raytracing process to stop after the first optical module
(mostly used for diagnostic purposes).

The keyword ’fraper’ (front aperture) is a two or four element array of numbers:

[r inner, r outer] or [r inner, r outer, azimuth1, azimuth2]

In the two-element case there is no limitation in azimuth. Figure 4 shows an example of such a front
aperture slit.

The position of a laboratory source (at a finite distance) can be off-set by the keywords ’labxoff’ and
’labyoff’.

When this function has been executed the array ’Phs’ will contain photons propagated to the focal plane.

5.2.29 mt save

Subroutine: mt save, mode=, samp=

20

Figure 4: A schematic illustration of the front of an optical module with spokes. A limited front aperture
is shown as the blue hatched area with the ’fraper’ keyword set to [140,180,5.798,7.066] (note that the
second azimuth value must be larger than the first one).

Saves various parts of the external variables to a FITS files and to a Yorick ’save’ file. The keyword ’mode’
controls the selection. It must be a string with one or more of the letters ”f”, ”p”, ”e”, or ”y”. If ’mode’
is omitted then all four will be assumed.

f: the focal plane image weighted with the reflection coefficient is written to a FITS image file ’fo-
cal plane nnnn.fits’, see section 6.10.

p: all photon data (or sampled with ’samp’) are written to ’photons nnnn.fits’.

e: all event data (or samled with ’samp’) are written to ’events nnnn.fits’.

y: most external variables are saved to ’ysession nnnn.ysav’.

Here nnnn is a serial number which is written to the file ’mt serial.txt’ in the current working directory.

A sampling for writing the photons to the photon file can be defined by keyword ’samp’ (default is 1) in
order to save disk space. It means that 1 out of ’samp’ photons will be put in the photon file. Similarly
for the event file.

21

5.2.30 mt scatter data file

Subroutine: mt scatter data file, dir, template, coating, fwhm=, outfile= \
dist angle max=, unit=, graze angle max=, gunit=, skip=, attenuate=

This function produces a FITS scatter table in the format required by mt load from text file input. A
standard gaussian scattering distribution (the width of which is defined by keyword fwhm) is added to all
table rows.

The text file names are expected in a given format: TTTTnn x.xxx where nn is the coating identification
number (two digits) and x.xxx is the grazing angle in degrees. TTTT is the string given as keyword:
template There should be at least two data columns, the first with energy in keV and the second with
the corresponding coefficient of reflection.

An example, a file by name of ’IXO ml00 0.580’ is shown here:

;

; IMD Data

;

; Saved on Fri Apr 15 14:01:20 2011

;

; Structure:

;

; B4C layer (1), z=80.00 A, sigma=4.00 A (err. fun.)

; Ir layer (2), z=100.00 A, sigma=4.00 A (err. fun.)

; SiO substrate, sigma=4.00 A (err. fun.)

;

; delta(lambda)=0.0025 keV

;

; Theta=0.5800 deg

;

; E [keV] R

;-------------

0.10000000 0.0000000

0.25050505 0.91731060

0.40101010 0.92592556

0.55151515 0.93643846

0.70202020 0.94280731

0.85252525 0.94734738

1.0030303 0.95132724

.

.

.

13.795960 0.0079416739

13.946465 0.0063930611

14.096970 0.0049206135

14.247475 0.0036044061

14.397980 0.0025267925

14.548485 0.0017089891

14.698990 0.0011724647

14.849495 0.00092233064

15.000000 0.0000000

All files with identical coating number are expected to have identical energy table values since the output
FITS file defines a regular grid of energy and grazing angle values.

22

mt scatter data file will select files with the correct coating type based on the ’template’ string and do the
data reformatting. An artificial extension of the grazing angle range is defined in keyword graze angle max
(with affilated keyword gunit) will replicate the table with the largest angle value in order to accommodate
extraordinarily large grazing angle reflections.

In some cases the first values in the table give incorrect reflection coefficient values; they can be skipped
by keyword skip. Also the number of energy values can be quite large and an attenuation might be
appropriate to avoid too large files that will slow down the process. Hence the keyword attenuate.

It is very likely that this function will require some editing with a new text file format.

5.2.31 mt sel scatter

Function: distribution = mt sel scatter(energy, angle in, >rcoef)

returns bi-linearly interpolated scatter distribution, normalized to sum = 1. The coefficient of reflection
is returned in the last argument (here ’rcoef’) and the corresponding angles can be found in the external
’Anglesarr’.

5.2.32 mt setup system

Subroutine: mt setup system, system defining file

Imports the system as defined in system xxx.scm (standard but not mandatory name), where xxx is a
suitable identifier string.

5.2.33 mt spoke blocking

Subroutine: flag = mt spoke blocking(xy array)

Returns 1 (one) if the photon hits a spoke at position ’xy array’, a two-element array. Otherwise it returns
0 (zero).

5.2.34 mt spoke read

Subroutine: mt spoke read, filename, pos=

Reads the spoke definition file in .scm format (see section 6.7) and sets up the appropriate external vari-
ables (Phi spokes1, Width spokes1, Reverse spokes1 for entrance spokes and Phi spokes2, Width spokes2,
Reverse spokes2 for exit spokes. The external variable Spoke define files holds the filenames. There are
two spoke definition files per optical module (may be identical) or none.

The keyword ’reverse’ in the spoke definition file will cause a reverse action of the spokes so that photons
are allowed through the spokes but not elsewhere. This may be used for checking if the definition of the
spokes works as expected.

23

5.2.35 mt skyima2skyspec

Subroutine: mt skyima2skyspec, dol skyima, dol arf, emin, emax, outfile, \
sc=, nh=, p1=

Uses a skyimage from an X-ray observation together with its ARF. The image must be in countrates per
pixel to produce a sky spectral definition file which is a FITS file with one or more extensions:

A map of normalization factors, a map of the spectral parameters, and a map of column densities. The
last two may reduce to keywords in the first extension if a constant value is to be used. The ancillary
response file (ARF) from the X-ray observing instrument is copied to the new file.

The output of this function only depends on the spectral models and the image producing instrument.

5.2.36 mt skyspec2skydef

Subroutine: mt skyspec2skydef, sky spec def file, skydef file, ra scx, dec scx, \
posang, lim=, exposure=, e1=, e2=, nchan=, \
radius=, fluxdir=, mission=, instrume=, telescop=

This function makes a sky definition file and corresponding photon files adequate for the instrument to
be simulated.

5.2.37 mt upd om coating

Subroutine: mt upd om coating, coating table, filename

Updates the column with coating information in an optical module description file (section 6.3, page 26)
’filename’. The input is taken from a text file in ’.scm’ format, ’coating table’, which is an list of coating
numbers, see section 6.5 page 27.

6 Data organization

6.1 Content of memory

The information of the photons used in the raytracing is kept in a number of external variables as described
in the appendix section 17, page 47.

Running mt run creates an array by name of ’Phs’ of the struct: ’s Ray’ with members:

E photon position (array of 3)
R photon direction (array of 3)
angle in1 grazing angle of incoming ray of first reflection
angle in2 grazing angle of incoming ray of second reflection
angle out1 grazing angle of outgoing ray from first reflection
angle out2 grazing angle of outgoing ray from second reflection
rcoef reflection coefficient

24

energy energy in keV
mirror mirror number
status photon status indicator
bounce binary flag for photon reflections
E1 position at entrance of first module (array of 3)
E2 position at entrance of second module (array of 3)
I1 position at first reflection (array of 3)
I2 position at second reflection (array of 3)
D1 direction before first reflection (array of 3)
D2 direction before second reflection (array of 3)

It means that the user can easily access this information upon completion of a raytracing run.

After a call of ’mt detector’ an event list is found in the array ’Evlist’ that is an array of struct ’s MTEvent’
with members:

rawx (int) Pixel number on the detector in x
rawy (int) Pixel number on the detector in y
detx (float) Position on the detector in x
dety (float) Position on the detector in y
pha (int) PHA (or PI) value
energy (float) [keV] Energy assigned to event
flag (int) Optional use (the background has a zero)

6.2 Telescope system definition files

The complete telescope system is defined in a text file in .scm format. A number of keywords will give
specific parameters or names of auxiliary files with additional information.

The following keywords give the information for the complete system and they must be found in the
telescope system definition file:

num modules Number of optical modules in the telescope system (1 or 2).

detector descr file Name of file with detector information.

The following keywords must be defined for each optical module in correct order with parabolic (or
parabolic-like) first:

om type Can be either parabolic, hyperbolic, or conical.

z reference The z coordinate of the reference plane in the telescope system.

Zfocus The z coordinate of the focus in the coordinate system of the optical module itself.

r outer The radius of the outer mirror shell at the aperture (only to be given for the master module).

r inner The radius of the innermost mirror shell at the aperture (only to be given for the master module).

25

om file The name of the optical module describing file.

mirror thickness file The name of the file with a table of mirror thickness as a function of radius. The
values are found by linear interpolation.

mirror deform file The name of the deformation description file.

spoke define file The name of the spoke definition file. If this one is given the same spokes will be used
for entrance and exit of the optical module.

spoke define file entry The name of the spoke definition file for the entrance of the optical module.

spoke define file exit The name of the spoke definition file for the exit of the optical module.

The reflection/scattering files are given by one or more of the ’scat file’ keywords. The one to use for a
given mirror is identified by the coating type number which is to be found in a column of the ’om file’ and
as a FITS keyword in the scattering file.

scat file A scatter property describing file (see section 6.6) to be considered. The coating type is used to
identify which one is appropriate for a given mirror.

6.3 Optical module description files

The description of an optical module is (usually) found in a file by name of ’om abc NNN.fits’ where NNN
is a serial number and ’abc’ characterizes the geometrical type. Each row corresponds to a mirror shell.
The table is found in FITS extension one as:

Column name Unit Description

R1 mm Radius of reflecting surface at Z1
R2 mm Radius of reflecting surface at Z2
Z1 mm Z coordinate of mirror aperture
Z2 mm Z coordinate of mirror inner edge
DCOEF∗ mm Coeffient describing a parabolic surface
ACOEF∗ mm Coeffient describing a hyperbolic surface
MIRROR ANGLE∗ rad Mirror angle for a conical mirrors
MLENGTH mm Mirror length
MTHICK mm Mirror thickness
COATING Number identifying the coating type
RB1I mm Inner radius of entrance slit
RB1O mm Outer radius of entrance slit
RB2I mm Inner radius of exit slit
RB2O mm Outer radius of exit slit
ZB1I mm Z value of inner radius of entrance slit
ZB1O mm Z value of outer radius of entrance slit
ZB2I mm Z value of inner radius of exit slit
ZB2O mm Z value of outer radius of exit slit
∗ Only the appropriate column is included.

The column ’COATING’ controls the scattering and reflection properties of the mirror shell. It can be
changed by using the function ’mt upd om coating’ (section 5.2.37, page 24) with input from an ASCII
coating table (see below).

26

6.4 Mirror thickness file

A text file in .scm format with two columns: radius and mirror thickness.

The keyword lines:
// colname = radius

// colname = mirror thickness

must be present.

Both must be given in mm.

6.5 Coating tables

A text file in .scm format with two columns: mirror number and coating number. (Remember that mirror
numbering starts from the outside).

Mirror numbers are assumed to be increasing and consequtive so missing numbers are filled in with the
latest coating number.

The keyword lines:
// colname = mirror

// colname = coating

must be present.

An example where e.g. mirrors 16 thru 29 will be assigned coating 9, is shown below:

// Coating table for Nustar 2011-01-04

//

// 10 recipes as in /home/njw/yorick/mraytrace/finns_data_101008

//

// colname = mirror

// colname = coating

1 10

16 9

30 8

45 7

58 6

72 5

85 4

98 3

110 2

122 1

6.6 Scatter data files

The data input for the scattering properties can in principle have many different formats and the user
must be prepared to build some kind of interface to produce the scatter files as described below.

An example of such an interface is given by the function ’mt scatter data file’ (page 22).

27

The format has been chosen to make it possible to handle all kinds of scattering distributions. When
making use of the data in the raytracing scheme an interpolation between values is performed. In order
to ease this process it is required that the energy and grazing angle values are given in a regular grid.

The scattering properties depend (possibly) on the coating type and there must be a file for each coating.

The table must be stored as a binary table as the first FITS extension where the header contains the
following keywords:

Keyword name Value Unit Description

EXTNAME SCATTER FILE The name of the extension
COATING (appropriate integer) The coating identifier

The table itself must include these columns:

Column name Unit Description

ENERGY keV Energy of photons
ANGLE IN deg Grazing angle
R COEF Reflection coefficient
DISTRIBUTION (Vector column) Scattering distribution
DATA ORIGIN String describing the origin of the data

The table itself one has an exception in row one, where the column ’DISTRIBUTION’ holds the scattering
angles (in radians) corresponding to the distribution. The other information in the first row is therefore
meaningless.

6.7 Spoke definition files

The keyword ’spoke define file’ in the telescope system file is used to indicate the spoke definitions is to
be found. If it is omitted then no spokes will be included. Since entrance spokes and exit spokes may not
be identical then the ’spoke define file’ keyword must appear twice for each optical module as entrance
and exit resp. or not at all.

The spoke data are expected in .scm format with keywords ’angle unit’ and ’width unit’. There are only
two options for ’angle unit’, namely ’deg’ or ’rad’. The ’width unit’ can be ’mm’ or ’cm’.

There can be two or four table columns in the file depending on if radial information is required as well.
The two columns with angle and width information must be identified by keywords ’colname’ as ’angle’
and ’width’. The radial information is in columns named ’rstart’ and ’rstop’ – if present.

In this version (3.5) of MT RAYOR the spokes are assumed to have a constant width (independent of
radius) and full extent from inner radius to outer radius if ’rstart’ and ’rstop’ are not given, else these are
used to confine the spokes in the radial direction. This implies that several spokes can be defined with
the same angle.

It is assumed that no overlapping spokes have been defined.

More elaborate models will be constructed when the need arises.

An example is shown here:

//

28

// Spoke definitions for Nustar 1-alpha-top

//

// angle_unit = deg; mandatory keyword

// width_unit = mm; mandatory keyword

//

// reverse = 0

//

// colname = angle; mandatory keyword

// colname = width; mandatory keyword

// colname = rstart; mandatory keyword

// colname = rstop; mandatory keyword

//

// angle width rstart rstop

//

0.0 7.2 50.000 55.805; inner three layers

0.0 6.8 55.805 191.751

7.5 2.2 104.784 191.751

15.0 2.6 50.000 55.805

15.0 2.2 55.805 191.751

22.5 2.2 104.784 191.751

30.0 2.6 50.000 55.805

30.0 2.2 55.805 104.784

30.0 6.8 104.784 191.751

37.5 2.2 104.784 191.751

45.0 2.6 50.000 55.805

45.0 2.2 55.805 191.751

52.5 2.2 104.784 191.751

60.0 7.2 50.000 55.805; inner three layers

60.0 6.8 55.805 191.751

67.5 2.2 104.784 191.751

.

(continues the full circle)

.

6.8 Deformation description files

The keyword ’mirror deform file’ in the telescope system file is used to indicate where the deformation
information is to be found. It can be omitted if no deformations are to be included.

The deformation data are expected in a FITS image extension (must be the first in the file apart from the
primary header data unit) in a three dimensional image where the first dimension is azimuth, the second
one is z, and the third is mirror number. In this way each slice is a map of deviations in radius from the
ideal surface measured in mm.

The convention adopted for the sign is that

rtrue = rideal − δrdeform (1)

where δrdeform is the value obtained by linear interpolation in the mirror ’map’.

The azimuth values (the first dimension) are taken to be distributed evenly between zero and 2π.

Similarly the z values (the second dimension) are assumed to be equidistant between the lower and upper
edge.

29

6.9 Photon save files

A raytracing section consists of sending a number of photons towards the opening of the telescope. The
photons are held in the memory and by a call of ’mt save’ (page 20) they will be written to a binary table
FITS file by name ’photons NNNN.fits’ where NNNN is a serial number. Keywords in the header explain
what telescope defining file has been used.

Irrespective of a double or single reflection telescope the photons are described in the FITS extension one
as:

Column name Unit Description

DETX mm X coordinate of count on focal plane
DETY mm Y coordinate of count on focal plane
RAYX X direction of ray at focal plane
RAYY Y direction of ray at focal plane
RAYZ Z direction of ray at focal plane
ANGLE IN1 rad Grazing angle in-coming
ANGLE OUT1 rad Grazing angle out-going
ANGLE IN2 rad Grazing angle in-coming
ANGLE OUT2 rad Grazing angle out-going
MIRROR Mirror number
RCOEF Reflection coefficient
AZIMUTH rad Azimuth angle at entrance of photon
ENERGY keV Photon energy
BOUNCE Flag for what reflections occurred
I1Z mm Internal first module z-value where reflection happened
I2Z mm Internal second module z-value where reflection happened
STATUS Describes fate of photon (0 means OK)

Calling ’mt save’ may also produce a focal plane image in ’focal plane NNNN.fits’, an event file ’events NNNN.fits’,
as well as saving the entire Yorick session in ’ysession NNNN.ysav’, where NNNN is the same as for the
photon file.

6.10 Photon image files

The focal plane image is put into a FITS file by name ’focal plane NNNN.fits’ where NNNN is a serial
number by the mt save,mode=”f” command.

The image size is defined by keywords ’Dim focp’ and ’Pix focp’ defined in the system defining file (see
later).

6.11 Photon flux files

A standard format for representing the source photon spectrum has been defined for realistic simulations.

The source photon flux is described by a FITS binary table in extension number 1. The header must have
the following keyword included:

30

Keyword name Value Description

EXTNAME PHOTON FLUX or DXB PHOTON FLUX The name of the extension

The FITS columns of the binary table must be:

Column name Unit Description

ENERG LO keV Lower boundaries of the energy channels
ENERG HI keV Upper boundaries of the energy channels
PHOTFLUX photons cm−2 s−1 keV−1 Photon flux values

Then the appropriate number of photons is calculated (the keyword ’exposure’ (in seconds) must be
supplied in the call of mt run) and the energies are sampled from the distribution given by the flux.

A function, mk photflux, to produce such photon flux files for simple standard spectra such as power law,
thermal bremsstrahlung, and blackbody radiation, can be found in the auxiliary package ’xray.i’.

6.12 Source list files

A number of sources can be defined in a FITS file with the following format:

The header of the first extension that must be a binary table must have the following keyword included:

Keyword name Value Unit Description

EXTNAME SKY DEFINITION The name of the extension
RA SCX deg Right Ascension of boresight
DEC SCX deg Declination of boresight
POSANG deg Position angle of telescope (satellite)
EXPOSURE s Exposure time for suggested observation

The FITS columns of the binary table must be:

Column name Unit Description

X SKY arcmin Source position along x-axis
Y SKY arcmin Source position along y-axis
DPHOT mm−2 Photon density on the entrance aperture
RENORM Renormalization factor to apply
DOL DOL of photon flux definition FITS extension

Each of the photon definition DOLs must have an extension name as indicated in section 6.11.

6.13 Sky definition files

FITS file with several extension describing the intensity map and maps of the spectral parameters.

7 Cookbook

The user is guided through two example sessions step by step with additional explanations.

The used character font indicates the function in the dialogue:

31

written by shell or program. To be entered by user.
Comments and remarks

7.1 Download and installation

It is assumed that the user is in possession of the file: mt rayor-3.5.tar that contains the MT RAYOR
software itself but also a number of auxiliary packages necessary for the execution of MT RAYOR func-
tions.

The downloading and installation of Yorick for Solaris and Linux platforms is explained in the appendix
section 18 (page 49) and the installation of the mt rayor-3.5 package in section 5 (page 10).

7.2 The GRI system with a single optical module

This subsection demonstrates the steps right from the beginning to produce some raytracing results for a
single reflection telescope such as the one proposed for the GRI mission.

In the GRI geometry the spacing between the successive mirror shells is kept constant. Then the mirrors
need to get longer and longer as the radius decreases in order to fill out the entrance opening (thereby
avoiding a ’leaky’ module). This is implemented in mt create om par1 (see later).

The first example walks through a case where scattering is disregarded and therefore no coating table is
required.

7.2.1 Set up the system definition file

> cd /basdir/yorick/mraytrace

A sample system definition file system gri.scm has been provided in the mt rayor-3.5.tar package. It
contains a number of parameters for the telescope system definition and can be created/modified with a
text editor.

A ’.scm’ style has been used. It has some similarities with the FITS header format (see section 19 page 50).

The file is reproduced here:

// system_gri 2008-04-20/NJW

//

// Single parabolic optical module as the one proposed for

// the GRI project for high-energy gamma-ray focussing.

//

// Focal plane is per definition z = 0

//

// num_modules = 1

// om_type = parabolic

// z_reference = 100000.0; mm

// Zfocus = -100000.0; mm

//

// r_outer = 300.0 ; mm

// r_inner = 100.0 ; mm

32

//

// mirror_length = -999.0; Implying N/A

// mirror_thickness_file = gri_mirror_thickness.scm

//

// focal_length = 100000.0; mm

//

// Based on constant spacing between mirrors so that the

// mirrors get shorter and shorter with increasing radius

//

// om_function = mt_create_om_par1

// om_parameter = 0.775; [mm], ’spacing’ parameter

// om_file = /home/njw/yorick/mraytrace/om_par_01.fits

// mirror_deform_file = none

//

// Here follows a list of scatter information files.

// They can appear in any order:

//

// scat_file = /home/njw/yorick/mraytrace/scat_fake_10.fits

// scat_file = /home/njw/yorick/mraytrace/scat_fake_20.fits

// scat_file = /home/njw/yorick/mraytrace/scat_fake_30.fits

//

// Focal plane pixel settings (only used by mt_save):

//

// Dim_focp = 251; Number of pixels of focal plane detector

// Pix_focp = 0.5; [mm] Pixel size

//

See 6.2, page 25, for an explanation of the mandatory keywords. Note, for example, that the mirror deform file

has been set to ’none’ which implies that it is no to be used.

7.2.2 Create the optical module file

Now it is time to invoke the Yorick scripting language:

mraytrace> yorick
Copyright (c) 2005. The Regents of the University of California.

All rights reserved. Yorick 2.1.05 ready. For help type ’help’

Load all the required functions:

> #include ”mt rayor-3.5.i”
Setup while checking what is missing

> mt setup system,”system gri.scm”
Number of modules in system : 1

Optical module file : om par 01.fits

Opt module file: om par 01.fits does not exist

You may want to create it by ’mt create om par1,filename="om par 01.fits"’

Scatter file : scat fake 10.fits does not exist

Scatter file : scat fake 20.fits does not exist

Scatter file : scat fake 30.fits does not exist

Warning level 30100

One or more scatter files are missing!

An optical module file is missing!

If scattering is not requested the warning can be ignored.

First job is to create a parabolic optical module file.

33

You can cut and paste the command given above

> mt create om par1, filename=”om par 01.fits”
The parabolic system optical module file: om par 01.fits has just been created

It has 260 mirrors

and it might need a coating update: mt upd om coating,...

Repeat the setup command to check integrity and set external variables

> mt setup system,”system gri.scm”
Number of modules in system : 1

Optical module file : om par 01.fits

Scatter file : scat fake 10.fits does not exist

Scatter file : scat fake 20.fits does not exist

Scatter file : scat fake 30.fits does not exist

Warning level 30000

Implying that everything is in order except for scattering

7.2.3 Running a case

> mt run, 50, 1, 45, dphot=0.03, chat=2, no scatter=1
Running with E=50 keV, 1 arcmin offaxis, 45 deg azimuth

Setting the ’no scatter’ keyword is important

Using optical module /home/njw/yorick/mraytrace/om par 11.fits

with 259 mirrors and Zfocus = -100000 mm

7540 photons in total

5169 with status 0

1187 with status 1

583 with status 2

0 with status 3

601 with status 4

0 with status 5

The non-zero status values indicate an absorption in the module.

Due to the randomization the actual numbers may deviate from these.

7.2.4 Display the result

> mt qimage,size=80
Making an image of the focal plane

An image similar to the left panel of Figure 5 here should be seen.

The appearance away from the focal plane can be inspected:

> mt qimage,5000,size=100
Making an image 5000 mm above the focal plane

34

−50 0 50
−50

 0

 50

mm

m
m

Figure 5: Left panel: Focal plane. Right panel: 5000 mm above focal plane

7.2.5 Introducing scattering

It is assumed that the scattering properties depend on energy and the type of mirror surface coating. The
scattering properties for a given coating are kept in a FITS file, see section 6.6, page 27. Such scatter
data files may be created independently, but two functions are supplied for creating energy independent
scatter data files.

One of them, mt fake scatter data, introduces an ad hoc energy dependence of the reflection coefficient and
a gaussian scatter profile. This is is useful for investigating the effect of various widths of the distribution
on the loss of photons.

The other one, mt scatter data file, reads a set of text files in .scm format and converts to FITS files in
the proper format.

The following commands will produce the faked scatter files required for the example above:

> mt fake scatter data, ”scat fake 10.fits”,fwhm=4.85e-5,coat=1
The FWHM is given in radians (here equal to 10 arcsec)

> mt fake scatter data, ”scat fake 20.fits”,fwhm=9.70e-5,coat=2
The FWHM is given in radians (here equal to 20 arcsec)

> mt fake scatter data, ”scat fake 30.fits”,fwhm=1.455e-4,coat=3
The FWHM is given in radians (here equal to 30 arcsec)

The optical module file has a column for the proper coating to use for each mirror. It can be updated
indepently but a function to do it from a simple text file has been supplied. The format of the text file
is described in section 6.5, page 27. Two examples, ’mircoat gri.scm’ and ’mircoat nustar.scm’ come with
this distribution.

> mt upd om coating, ”mircoat gri.scm”,”om par 01.fits”
Updates the COATING column in om par 01.fits

> mt setup system,”system gri.scm”
Number of modules in system : 1

Optical module file : om par 01.fits

Scatter file : scat fake 10.fits coating 1

Scatter file : scat fake 20.fits coating 2

35

Scatter file : scat fake 30.fits coating 3

Warning level 0

System OK!

Should yield OK status

Then run the on-axis case

> mt run, 50, 0, 0, dphot=0.05

The used coefficients of reflection can be shown:

> mt reflplot

 0 20 40 60 80
0.0

0.5

1.0

1.5

scat_fake_30.fits

Energy [keV]

R
 c

oe
f

Coating type : 3

Min. angle: 7.89e−04 rad = 45.2 mdeg

Max. angle: 1.42e−02 rad = 814.2 mdeg

Evaluation of the HPD:

> mt analysis

Analysis based on Phs with 6287 status==0 photons

The focal length is 100.00 m

Center with all 10434 photons: 0.045 0.009

Improved center with 10245, 10251 photons: 0.033 -0.000

HPD : 4.129 mm <> 8.52 arcsec

7.3 Wolter I raytracing

> mt setup system,”system wolter1.scm”
Number of modules in system : 2

Optical module file : om par w1.fits

Opt module file: om par w1.fits does not exist

You may want to create it by ’mt create om par2,filename="om par w1.fits"’

Optical module file : om hyp w1.fits

Opt module file: om hyp w1.fits does not exist

You may want to create it by ’mt create om hyp2,filename="om hyp w1.fits"’

36

Scatter file : scat fake 10.fits coating 1

Scatter file : scat fake 20.fits coating 2

Scatter file : scat fake 30.fits coating 3

Warning level 200

An optical module file is missing!

First job is to create a parabolic optical module file

> mt create om par2, filename=”om par w1.fits”
The resulting optical module file name is reported

Next job is to create a hyperbolic optical module file

> mt create om hyp2, filename=”om hyp w1.fits”
The resulting optical module file name is reported

> mt upd om coating,”mircoat wolter1.scm”,”om par w1.fits”
> mt upd om coating,”mircoat wolter1.scm”,”om hyp w1.fits”

Run a case with an on-axis source

> mt run, 50, 0, 0, dphot=0.05, no scatter=1”

This will make a run launching 50 keV photons with a density of 0.05mm−2.

7.4 Conical approximation raytracing

> mt setup system,”system conw1.scm”
Number of modules in system : 2

Optical module file : om cpar w1.fits

Opt module file: om cpar w1.fits does not exist

You may want to create it by ’mt create om con2,filename="om cpar w1.fits"’

Optical module file : om chyp w1.fits

Opt module file: om chyp w1.fits does not exist

You may want to create it by ’mt create om con3,filename="om chyp w1.fits"’

Scatter file : scat fake 10.fits coating 1

Scatter file : scat fake 20.fits coating 2

Scatter file : scat fake 30.fits coating 3

Warning level 200

An optical module file is missing!

First job is to create a conical optical module file

> mt create om con2, filename=”om cpar w1.fits”
The resulting optical module file name is reported

Next job is to create a second conical optical module file

> mt create om con3, filename=”om chyp w1.fits”
The resulting optical module file name is reported

> mt upd om coating,”mircoat wolter1.scm”,”om cpar w1.fits”
> mt upd om coating,”mircoat wolter1.scm”,”om chyp w1.fits”

Run a case with an on-axis source

> mt run, 50, 0, 0, dphot=0.05, no scatter=1”

This will make a run launching 50 keV photons with a density of 0.05mm−2.

37

8 Point source simulation

In real astrophysical observations sources are not monochromatic. A representative source spectrum can
be simulated by issuing a number of calls of mt run with proper choices of the dphot keyword and energy
values.

A facility to simplify this job has been built into mt run. If the first argument is not given as a number
but as a (scalar) string that must be the name of a photon flux file (see section 6.11) with intensities and
energies are defined suitably.

The number of photons is derived from the given spectrum and their energies are sampled appropriately
from the distribution.

9 Simulation with source list as input

For the simulation of a sky field with a number of sources in the Field-Of-View mt run may be given as
first argument the name of a source list file. It gives the positions of the sources in Right Ascension and
Declination as well as their spectra, see section 6.12.

10 Simulation with sky image as input

The simulation of extended sources can be done by using an intensity image e.g. from a real observation.
The idea is that each pixel is regarded as a separate source. In order to get a realistic image of a extended
source the pixels must be sufficiently small i.e. smaller than the size of the FWHM of the PSF of the
simulated observation. On the other hand, too small pixels may lead to long execution times and large
requirements for intermediate file storage.

The simulation proceeds in two steps.

The first step is to define a spectral model for each source (pixel). A spectral model for each pixel (i.e. each
source) in the image must be defined. The model is characterized by a normalizing factor, a parameter
(photon index for a power law spectrum and temperature (kT) for a thermal bremsstrahlung or blackbody
spectrum), and an absorbing column density. A map of the spectral parameter can be supplied in an array
(FITS map) of the same dimensions as the sky image and similarly for the column density.

A sky spectral definition file is a FITS file with several extensions. The first extension is the normalization
map.

Case 1: The pixel values in the input image is the countrate per pixel and per second for the instrument
that has recorded the image.

With fi(E) as the photon flux apart from the normalizing factor ki for pixel i and Aeff (E) as the effective
area (assumed to be the same for all pixels) then the count rate becomes

ci =

∫ E2

E1

kifi(E)Aeff (E)dE (2)

where E1 and E2 are the energy limits for detection. With usual units the photon flux, kifi(E), is in

38

photons cm−2 s−1 keV−1 and energy is measured in keV and Aeff in cm2.

Case 2: The pixel values are relative and the normalization must be found

Suppose the energy flux (SX) is known for a part of or the entire image between energies ǫ1 and ǫ1:

SX = 1.6 10−9
∑

i

∫ ǫ2

ǫ1

E kifi(E)dE (3)

The summation is over the approriate set of pixels.

The normalization is provided by the ratio of the input sky image with the calculated count rate with
unit normalization.

The normalization of each pixel is saved to a sky spectral definition file in FITS format. The used ARF
is saved to another extension in the same file. If the spectral parameter is given as a map, then that map
is saved to the next extension; else it is written as a FITS keyword to the normalization extension. The
same applies for the column density.

These actions are handled by ’mt skyima2skyspec’.

The next step consists of producing a sky definition file i.e. by converting each pixel to a row in the
extension. That is taken care of by function ’mt skyspec2skydef’.

11 Observation simulation

When a raytracing process has finished the detection can be simulated by the ’mt detector’ function. It
uses as input a detector description file, see section 11.2 below.

The detector is assumed to be pixellated with a center on the focal point (the boresight). The energy
dependent detector quantum efficiency is also involved as well as the redistribution matrix (RDM) that
describes the probability that a registrered photon of a certain energy ends up as an event in a particular
energy bin (defined by the detector electronics).

The function ’mt detector’ will on the basis of a given quantum efficiency table, an RDM, detector position
resolution or pixel size and number produce an event list from the photon list (the array ’Phs’) to simulate
an observation.

The event list is stored in the external variable ’Evlist’ that is an array of the struct ’s MTEvent’ (see
section 6.1). The function ’mt det image’ can be used to generate a detector image.

11.1 Adding background

In most detectors there are two contributions to the detector background

Instrument background This is caused by ionised high energy particles of solar or cosmic origin passing
through the detector or gamma rays from Compton events from particle reactions in other parts of
the satellite body.

39

Diffuse X-ray background This is X-radiation from all parts of the sky presumably caused by numer-
ous distant sources but at low energies in particular other truly diffuse sources may be responsible.

In MT RAYOR the instrument background is asssumed to be uniform across the detector and described
in a table in .scm-format (see section 19) with two columns: the energy in keV and the count rate in
cts keV−1s−1cm−2.

The command mt det add instr bkg will add counts at random according to the given energy distribution.

The diffuse X-ray background (DXB, aka CXB) cannot be described in general but can be included in
the following way: Define a large number of sources in the FOV of the telescope with a flux as given
by the adopted model for the radiation. Then run all these sources through the telescope and turn the
succesful photons into events by a call of mt detector. An event file can then be generated by command
mt save,mode=”e”.

The name of the thus produced file is given as keyword ’dxb bkg file’ in the detector description file,
see 11.2. Then the command mt det add dxb bkg will sample the appropriate number of events from this
and add them to the general event list (’Evlist’).

The command mt det add bkg combines both types of backgrounds i.e. calls both mt det add instr bkg
and mt det add dxb bkg.

11.2 The detector

The prerequisite for an observation is a detector with certain properties. The information on those are
expected in an .scm format file such as:

//

// Detector definition file

//

// n/a qeff_file = /home/njw/nustar/QEFF_test.fits

// In extension ’QUANTUM EFFICIENCY’: ENERGY, QUANTEFF

//

// rmf_file = /home/njw/nustar/info100204/nustar_sens_nosvn/outfile/rmf.fits

// In extension ’MATRIX’ : ENERG_LO, ENERG_HI, MATRIX

// ’EBOUNDS’: E_MIN, E_MAX

//

// num_pixels1 = 64

// num_pixels2 = 64

// pixel_size1 = 0.6; mm

// pixel_size2 = 0.6; mm

//

// instr_bkg_file = instrument_bkg_countrate.scm

// dxb_bkg_file = events_0000.fits

//

The mandatory keywords are:

qeff file The table of the detector quantum efficiency as as function of energy. Only to be supplied if the
information is not contained in the RMF. (In the actual example the string ’n/a’ has been added to
the keyword name).

40

rmf file This must be the name of a FITS file in OGIP format2 with at least two extensions: ’MATRIX’
and ’EBOUNDS’ that contains all the necessary detector energy range and resolution information.

num pixels1 Number of pixels in the first coordinate (x-direction).

num pixels2 Number of pixels in the second coordinate (y-direction).

pixel size1 Size of pixels [mm] in the first coordinate (x-direction).

pixel size2 Size of pixels [mm] in the second coordinate (y-direction).

This format allows for no spacing between the pixels and assumes that all pixels have the same size.

If the quantum efficiency file name is given then the information must reside in an extension by name of
’QUANTUM EFFICIENCY’ and with the columns: ENERGY and QUANTEFF.

12 A simulation example

Below is given a file to include to run an complete simulation of a NuStar observation of the Bullet cluster
of galaxies from a count rate image obtained by Chandra:

#include "mt_rayor-2.5.i"

Sys = "system_nustar_con.scm";

mt_setup_system,Sys;

outfile = "skyspec_bullet.fits";

remove,"skydef_bullet.fits";

remove,"bullet_5-80.fits";

remove,"bullet_5-7.fits";

remove,"bullet_7-10.fits";

remove,"bullet_10-15.fits";

remove,"bullet_15-40.fits";

remove,"bullet_40-80.fits";

// "no background" images

remove,"bullet_5-80_nb.fits";

remove,"bullet_5-7_nb.fits";

remove,"bullet_7-10_nb.fits";

remove,"bullet_10-15_nb.fits";

remove,"bullet_15-40_nb.fits";

remove,"bullet_40-80_nb.fits";

dol_skyima = "08-55.73sm.fits+0";

dol_arf = "arf_chandra.fits[SPECRESP]";

emin = 0.8; // keV - applies to dol_skyima

emax = 5.5; // keV - applies to dol_skyima

mt_skyima2skyspec, dol_skyima, dol_arf, emin, emax, outfile, \

sc="TB", p1="tmapc.73sm_updated.fits+0", nh=5.6e20;

e1 = 5.0; // keV - applies to NuStar simulation

e2 = 79.0; // keV - applies to NuStar simulation

2”Office of the Guest Observer Program” see e.g. http://www.adass.org/adass/proceedings/adass94/corcoranm.html

41

radius_lim = 0.1556; // deg - max angle in NuStar FOV

mt_skyspec2skydef, outfile, "skydef_bullet.fits",104.625,-55.941, \

0.0, lim=0.05, exposure=5.e5, \

e1=e1, e2=e2, nchan=50, radius=radius_lim, fluxdir="/scratch/njw/fluxfiles", \

telescop="NuSTAR",instrume="MT_RAYOR-2.5 sim";

// Remove the ’Exposure’ external variable

mt_clear;

// Start the raytracing with an exposure time as indicated in the

// sky definition file

mt_run,"skydef_bullet.fits",chat=1;

// Produce the event list

mt_detector;

// first save images without background

im = mt_det_image(outname="bullet_5-80_nb.fits");

disp,im,pane=0;

write,format="%i counts in the detector (no bkg)\n", numberof(Evlist);

mt_det_image,emin=5.,emax=7.,outname="bullet_5-7_nb.fits";

mt_det_image,emin=7.,emax=10.,outname="bullet_7-10_nb.fits";

mt_det_image,emin=10.,emax=15.,outname="bullet_10-15_nb.fits";

mt_det_image,emin=15.,emax=40.,outname="bullet_15-40_nb.fits";

mt_det_image,emin=40.,emax=80.,outname="bullet_40-80_nb.fits";

// then add the background

mt_det_add_bkg;

// and save the simulated images

im = mt_det_image(outname="bullet_5-80.fits");

disp,im,pane=1;

write,format="%i counts in the detector, bkg included\n", numberof(Evlist);

mt_det_image,emin=5.,emax=7.,outname="bullet_5-7.fits";

mt_det_image,emin=7.,emax=10.,outname="bullet_7-10.fits";

mt_det_image,emin=10.,emax=15.,outname="bullet_10-15.fits";

mt_det_image,emin=15.,emax=40.,outname="bullet_15-40.fits";

mt_det_image,emin=40.,emax=80.,outname="bullet_40-80.fits";

// Write the events to a FITS binary table for further analysis

mt_save,mode="e";

12.1 Event list and analysis

Some general NJW supplied Yorick functions are available for making a data analysis once the raytracing
has been done as well as the conversion to events:

1. ’specbinning’ can produce a spectrum from the event list

42

2. ’spec2phaii’ can produce a FITS file in the PHAII format that spectral analysis tools such as ’xspec’
can read.

13 Testing the optics in the lab

A laboratory setup with an X-ray source at a finite distance can be simulated. The first argument of
mt run must be a FITS file with the source information as shown below:

The FITS header of the first extension of the ’Lab Source File’ must have the following keywords included:

Keyword name Value Description

EXTNAME LABSOURCE DEFINITION The name of the extension
ZPOSIT A real number [mm] Z position of the laboratory source

The FITS columns of the binary table must be:

Column name Unit Description

X mm X position of this source element
Y mm Y position of this source element
STRENGTH photons mm−2 Photon fluence on telescope aperture
ENERGY keV Energy of photons
DOL DOL of photon flux table

Any number of source elements can be defined to simulate a laboratory source with a finite extent and
perhaps varying spectral properties across its surface. Each source element is defined by its position (X,Y)
relative to the optical axis of the optics. The source position relative to the reference plane of the first
optical module is given by the FITS keyword ’ZPOSIT’.

The spectrum emitted by each laboratory source element can be given in a photon flux file (indicated
by its DOL) (with extension name ’PHOTON FLUX’). If the DOL has zero string length or is given as
”none” then a monochromatic source is assumed with energy from column ”ENERGY”.

The detector properties can be entered in precisely the same way as for the detector for celestial ob-
servations. The particular shape of the laboratory source can be modelled by supplying any number of
source elements. Any absorption apart from what happens in the optics must be included in the spectral
description.

When running mt detector the default placement of the detector in the Z-direction is in the focal plane. If
the detector is placed at another Z-position then the photons must be propagated to that place by running
mt propagate before calling mt detector.

14 Appendix: Geometrical formulae

14.1 Parabolic Mirrors

With the focus at (0, 0, zf) the formula is:

43

r =
√

2d(z − zf) + d2 (4)

where d defines a mirror shell. If the shell is requested to have the radius rm at z = zm then

d =
√

(zm − zf)2 + r2
m − zm (5)

In the coordinate system of the optical module zf will have a negative value.

14.2 Wolter I optics

For the Wolter I combination of cone sections the parallel rays are reflected by the paraboloide to converge
to a focal point, F1. But before they get there they intersect the hyperboloide which makes them converge
to the other focal point, F2. In this way F1 is common for the paraboloide and the hyperboloide.

Using ff as half of the distance between the two foci and fp as the distance from F2 to the reference plane
of the optical module then the equation (4) is changed to

r =
√

2d(z + 2ff + fp) + d2 (6)

and similarly equation (5) becomes

d =
√

(zm + 2ff + fp)2 + r2
m − (zm + 2ff + fp) (7)

A second parameter is required to describe the hyperboloide. The half value of the major axis, a, has been
chosen here. Again, fh is the distance from F2 to the reference plane of the (hyperbolic) optical module.

Then

r =

[

(z + ff + fh)2
f2

f − a2

a2
− (f2

f − a2)

]
1

2

(8)

If the shell is requested to have the radius rm at z = zm then

b2 = (zm + ff + fh)2 + f2

f + r2

m (9)

a =

[

1

2

(

b2 −
√

b4 − 4(zm + ff + fh)2 f2

f

)

]
1

2

(10)

In the solution for a in (10) the choice of the appropriate branch of the hyperboloide has been made.

14.3 Conical approximations

Each mirror is characterized by a radius at its beginning and an angle with respect to the telescope axis.
In the design included all the mirrors have the same lengths. For the master module a ray parallel to the
telescope axis that hits the midpoint of a mirror is requested to be reflected to cross the telescope axis at
a given focal point. For the slave module it is requested that a ray converging with given angle (namely
two times the angle of the first mirror) cross the telescope axis at at given focal point.

This leads to a third order equation which is solved in an exact way.

44

14.4 Surface perturbations

There will always be small deviations of the actual mirrors from the ideal shape. Such deformations can
be introduced by a two-dimensional array for each mirror that describes the deviation as a function of
azimuth and z-coordinate. Thus the surface is given by

r = rideal(z) − rdeform(z, φ) (11)

where r is the radius and φ the azimuth angle. The sign has been chosen by following a common convention.

15 Appendix: Expressions for raytracing

A ray with direction R encounters a reflecting surface with normalized normal N and the specularly
reflected ray is then

Q = R − 2(N · R)N (12)

In order to get the direction after a scattering away from the specular direction the direction perpendicular
to the specular direction but still in the plane defined by N and Q

V =
N + (N ·R)R − 2(N · R)2N

√

1 − (N ·R)2
(13)

The scattering angle, α, is the angle away from the specular direction

S = Q cosα + V sin α (14)

where S is the scattered direction. It is assumed here that there is no scatter out of the N,Q–plane.

R
Q

S

NV

α

Figure 6: A diagram of the vectors involved in the reflection process and the scattering angle.

45

15.1 The surface normal

The mirror surface in parametrized representation (with r = r(z, φ) as in equation 11):

x = r(z, φ) cosφ (15)

y = r(z, φ) sin φ (16)

z = z (17)

Then the surface normal is the cross product of the two vectors of the partial derivatives with respect to
the two parameters, φ and z:

∂x

∂φ
=

∂r(z, φ)

∂φ
cosφ − r(z, φ) sin φ (18)

∂y

∂φ
=

∂r(z, φ)

∂φ
sin φ + r(z, φ) cos φ (19)

∂z

∂φ
= 0 (20)

∂x

∂z
=

∂r(z, φ)

∂z
cosφ (21)

∂y

∂z
=

∂r(z, φ)

∂z
sin φ (22)

∂z

∂z
= 1 (23)

so the expression for N becomes

N =

(

∂x

∂z
,
∂y

∂z
,
∂z

∂z

)

×

(

∂x

∂φ
,
∂y

∂φ
,
∂z

∂φ

)

= r

(

− cosφ −
1

r

∂r

∂φ
sin φ,− sin φ +

1

r

∂r

∂φ
cosφ,

∂r

∂z

)

(24)

where the order of the vector product has been chosen so that N points more or less to the telescope axis.

46

16 Appendix: Word list

Coating number Each type of mirror coating is identified by a number.

Event file A FITS binary table file with information for each event registrered in the detector or samples
thereof.

Photon file A FITS binary table file with information for each raytraced photon or samples thereof.

Scatter file A FITS binary table file with a scattering description and reflection coefficients for a grid of
energy and grazing angle values.

Sky definition file (SDF) A FITS binary table file where each row represents a source to be raytraced.

Sky spectral definition file (SSDF) A FITS file with several extensions:

1. Mandatory: A map of the normalization constant including a keyword (SC) for the spectral
code (’PL’, ’BB’, or ’TB’)

2. Optional: A binary table with the ARF information for the instrument that observed the input
image

3. Optional: A map of the spectral parameter (only if it varies across the image; a constant value
is given as a keyword (PARAM1) with the first extension)

4. Optional: A map of the column density (only if it varies across the image; a constant value is
given as a keyword (NH) with the first extension)

System definition file A text file in the .scm format describing the details of the mirror modules and
the detector to use.

17 Appendix: External variables

The used external variables are as follows:

Acoef Single A-coefficient value for hyperbolic shape
Acoefarr Array of A-coefficient values for hyperbolic shape
Angle inarr Grazing angle values from the scatter data file
Angle uniq Array of unique grazing angle values from scatter data file
Anglesarr Angles for the scattering distributions
Coat list (struct) List of available coating types and the scatter files
Coating scat Coating number for loaded scatter file
Dcoef Single D-coefficient value for parabolic shape
Dcoefarr Array of D-coefficient values for parabolic shape
Det bkg file Name of detector background file (in .scm format)
Dim focp Dimension of focal plane array for ’mt save’
Distributionarr Scatter distribution data, 2D array Nangles x number of cases
Dphot Photon density (in mm−2) for incoming radiation
E max Array of upper energy bounds (in keV) for detector energy bins
E min Array of lower energy bounds (in keV) for detector energy bins
E mnx Array of center energies for detector energy bins
E uniq Array of energy values from scatter data file
Earr Entire energy array from scatter data file

47

Energ hi Array of upper energy bounds (in keV) for ARF and RDM
Energ lo Array of lower energy bounds (in keV) for ARF and RDM
Energy Energy as defined in latest run of mt run
Evlist Array of structs (s MTEvent) with event (or counts-) information
Exposure Exposure time [s] for photon flux file source definition
Fcoef Single F-coefficient value for parabolic shape
Focal length Focal length of combined system [mm]
Instr bkg file Name of the .scm file with a table of instrument background
Logfilename Name of log file to receive various information
Logflag Flag to tell if a log file is in use
Mirror angle Current mirror angle for conical approximation
Mirror anglearr Array of mirror angles for conical approximation
Mirror coating Array of defined mirror coatings for an optical module
Mirror deform arr Mirror deformation array (data cube)
Mirror deform files List of mirror deformation files to be used
Mirror eff factors Array of efficiences relative to spoke blocking
Mirror length Length [mm] of current mirror
Mirror lengths Array of mirror lengths [mm]
Mirror number Number of current mirror
Mirror thicknessarr Array of mirror thicknesses [mm]
Mirror thickness files Array of mirror thickness table files
Modtype Type of current optical module (given as a string)
Module num Number of current optical module
N mirrors Number of mirrors (also highest mirror number)
Ne mnx Number of detector energy bins
Num modules Number of optical modules in the system
Num pixels1 Number of detector pixels (x direction)
Num pixels2 Number of detector pixels (y direction)
Om files Array with optical module description files
Om functions List of function names for optical module creation
Om parameters Array with parameters for the optical module
Opt module file Name of FITS file with optical module information
Phi spokes1 Array of entrance spoke azimuth angles [rad]
Phi spokes2 Array of exit spoke azimuth angles [rad]
Phs Array of struct (s Ray) with current photon information
Pix focp Pixel size [mm] of focal plane array for ’mt save’
Q ener Array of energies [keV] for the quantum efficiences
Qeff Array of quantum efficiences for the detector
R1 mirror Radius [mm] of current mirror at entrance for conical approximation
R1arr Array of mirror radii at entrance, determined by the refl. surface
R2arr Array of mirror radii at exit, determined by the refl. surface
R coefarr Array of reflection coefficients from the scatter data file
R inner design Radius of innermost mirror (refl. surface) at entrance
R inner Radius of innermost baffle at entrance
R outer Radius of outermost mirror (backside) at entrance
Rb1iarr Array of inner radii of entrance slit
Rb1oarr Array of outer radii of entrance slit
Rb2iarr Array of inner radius of exit slit
Rb2oarr Array of outer radius of exit slit
Rdm Redistribution matrix for the detector
Reverse spokes A flag for reversing the spoke action
Rmf file Name of FITS file with RMF information

48

Rstart spoke1 Array of lower radius limits [mm] for entrance spokes
Rstart spoke2 Array of lower radius limits [mm] for exit spokes
Rstop spoke1 Array of lower radius limits [mm] for entrance spokes
Rstop spoke2 Array of lower radius limits [mm] for exit spokes
Scat files Array with coating scattering properties description files
Scatter file FITS file with scatter data
Spoke define files File names (in .scm format) of spoke definition files
Src azimuth Azimuth angle [deg] of source position
Src offaxis Offaxis angle [arcmin] of source position
Use mdeform Boolean to tell if mirror deformations should be included
Version A string variable that holds the MT RAYOR version number
Width spoke1 Array of entrance spoke widths [mm]
Width spoke2 Array of exit spoke widths [mm]
Xpixlims Two element array with detector edges [mm] in x direction
Xpixlo Array with lower detector pixel edges [mm] in x direction
Ypixlims Two element array with detector edges [mm] in y direction
Ypixlo Array with lower detector pixel edges [mm] in y direction
Z1 mirror Z1 value [mm] of current mirror
Z1 setups Z1 values [mm] to define ’gap’ telescopes
Z1arr Array of mirror entrance z values
Z2 setups Z2 values [mm] to define ’gap’ telescopes
Z2arr Array of mirror exit z values
Z reference Array with z coords. of the opt. module reference planes
Zb1iarr Array of z of inner, upper entrance slit
Zb1oarr Array of z of outer, upper entrance slit
Zb2iarr Array of z of inner, lower entrance slit
Zb2oarr Array of z of outer, lower entrance slit
Zfocus z coords of current opt. module
Zfocusarr Array of z coords of the foci of the optical modules

18 Appendix: Installing Yorick

http://yorick.sourceforge.net/index.php

Downloads
Find version 2.1.05 (or later).

Create a directory called e.g. ’yorick’.

Place the downloaded file ’yorick-2.1.05.tgz’ in it and cd to the directory. Then

gunzip yorick-2.1.05.tgz
tar xf yorick-2.1.05.tar
cd yorick-2.1
make
alias yorick /whatever/yorick/yorick-2.1/yorick/yorick

49

19 Appendix: The .scm format

A text file format has been used here for tabular data supplemented with comments and keywords.

Any line starting with either of .+−0123456789 is interpreted as a data line with blanks (spaces) as
separators.

Keywords are given as:
// keyword = value; comment

where keyword contains no space-characters and the ’=’ sign must be present. The value can be an
integer, a floating point number or a string. Everything following and including the ’;’ sign is ignored.
Here a string may contain spaces since it is read from the first to the last non-space character. If several
identical keywords are given then all their values will be read into an array.

Example:

// A valid text file in .scm format

// with a table of three columns and four rows

11.22 3 55

.3 17.001 -54.6

A line is a comment when it does not start with a numerical character

A keyword can be given as

// temperature = 17.34; degrees

-12.34 23.45 77.9

34 99 47

50

20 Appendix: History of updates

Version 3.5 (2011-08-24):

The quick and approximate evaluation of effective area in
function mt eff area quick was introduced with the accompanying
function mt get mirror eff factors to evaluate the blocking by the spokes.

Version 3.3 (2011-04-26):

The search for the photon entrance baffle slit now takes into account that the z-values of the baffles (and
mirror edges) may vary. This is added to accommodate the IXO (or Athena) telescope.

The search for reflections now happens along the entire photon path when mirror deformations are in-
cluded. A second reflection may be found in which case the photon is considered lost.

Function mt scatter data file has been updated with more keywords for maximum grazing angle and data
attenuation.

Function mt photpr added.

Bug 003 fixed.

Version 3.2 (2011-01-31):

The innermost mirror is no longer a dummy mirror.

The keyword ’system type’ has changed to ’om type’ (contents are unaltered) in the system definition file.

Reflection coefficients are calculated even if scattering is unselected.

Version 3.1 (2011-01-25):

Introduced keywords ’labxoff’ and ’labyoff’ for ’mt run’ and ’mt pre def photons’ to offset the laboratory
source position.

Bug 001 has been fixed so that radius information is no longer necessary in spoke defining files if the
spokes extend all the way from the smallest to the largest radius.

Bug 002 has been fixed.

Version 3.0 (2011-01-20):

Introduced radial limits on spokes as well as the possibility to use different spoke patterns for module
entry and exit.

Mirror thickness can now be dependent on the mirror radius. Described in a text table (.scm format) as
a function of radius for linear interpolation.

A struct element ’bounce’ has been added to the s Ray struct to tell where reflections have occurred.

No reflection is no longer a reason for a value status 6= 0.

Known bugs:

51

001: Spoke defining files must have radius definitions (columns ’rstart’ and ’rstop’).
002: Photon flux file input creates a crash in ’mt def photons’.
003: Azimuth error in mt drayplot.

Version 2.6 (2010-10-20):

Introduced spokes.

52

Index

basic coordinate system, 9
bounce, 19

Coating table, 27

Deformation description file, 9, 29

Effective area, 10, 14, 38
Evlist, 12, 25, 39

fraper (keyword), 20
Front Aperture, 11, 17

GRI, 8, 32

Half Power Diameter, 10
help, 10
HPD, 10

Lab Source File, 43

Mirror thickness file, 27

normal vector, 9
NuStar, 8

Optical module, 8
Optical Module Description File, 8, 9, 26

Photon flux file, 30
Photon image file, 30
Photon save file, 30
Phs, 12, 18–20, 24, 36, 39

s MTEvent (struct), 25, 39
s Ray (struct), 24
Scatter data file, 27
Sky Definition File (SDF), 31, 47
Sky Spectral Definition File (SSDF), 24, 38, 47
Source list file, 31
Spoke definition file, 28
Status value description, 19
System Definition File, 8, 47

unit of length, 9

Wolter I, 8, 11, 36, 44

53

